35 resultados para Rapid thermal annealing

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future read heads in hard disc storage require high conformal coatings of metal magnetic layers over high aspect ratio profiles. This paper describes pioneering work on the use of MOCVD for the deposition of cobalt layers. While pure cobalt layers could be deposited at 400C their magnetic properties are poor. It was found that the magnetic properties of the layers could be significantly enhanced with an optimised rapid thermal anneal. This work was sponsored by Seagate Technology and led to a follow up PhD studentship on the co-deposition of cobalt and iron by MOCVD.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel germanide Schottky contacts, formed by rapid thermal annealing of thin nickel films, have been characterized on n-type germanium wafers for a range of RTA temperatures. The highest Schottky barrier heights for electrons (= 0.6-0.7 eV) were obtained for RTA temperatures of approximately 300°C. For this RTA schedule, the corresponding barrier height for holes is close to zero, ideal for Schottky contacted p-channel germanium MOSFETs. When the RTA temperature was increased to 400oC, a dramatic reduction in electron barrier height (< 0.1 eV) was observed. This RTA schedule, therefore, appears ideal for ohmic source/drain contacts to n channel germanium MOSFETs. From sheet resistance measurements and XRD characterization, nickel germanide formation was found to occur at 300oC and above. The NiGe phase was dominant for RTA temperatures up to at least 435oC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present results for a variety of Monte Carlo annealing approaches, both classical and quantum, benchmarked against one another for the textbook optimization exercise of a simple one-dimensional double well. In classical (thermal) annealing, the dependence upon the move chosen in a Metropolis scheme is studied and correlated with the spectrum of the associated Markov transition matrix. In quantum annealing, the path integral Monte Carlo approach is found to yield nontrivial sampling difficulties associated with the tunneling between the two wells. The choice of fictitious quantum kinetic energy is also addressed. We find that a "relativistic" kinetic energy form, leading to a higher probability of long real-space jumps, can be considerably more effective than the standard nonrelativistic one.