947 resultados para pulsed rapid thermal annealing (PRTA)


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new materials has been the hall mark of human civilization. The quest for making new devices and new materials has prompted humanity to pursue new methods and techniques that eventually has given birth to modern science and technology. With the advent of nanoscience and nanotechnology, scientists are trying hard to tailor materials by varying their size and shape rather than playing with the composition of the material. This, along with the discovery of new and sophisticated imaging tools, has led to the discovery of several new classes of materials like (3D) Graphite, (2D) graphene, (1D) carbon nanotubes, (0D) fullerenes etc. Magnetic materials are in the forefront of applications and have beencontributing their share to remove obsolescence and bring in new devices based on magnetism and magnetic materials. They find applications in various devices such as electromagnets, read heads, sensors, antennas, lubricants etc. Ferromagnetic as well as ferrimagnetic materials have been in use in the form of various devices. Among the ferromagnetic materials iron, cobalt and nickel occupy an important position while various ferrites finds applications in devices ranging from magnetic cores to sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic properties of nano-crystalline soft magnetic alloys have usually been correlated to structural evolution with heat treatment. However, literature reports pertaining to the study of nano-crystalline thin films are less abundant. Thin films of Fe40Ni38B18Mo4 were deposited on glass substrates under a high vacuum of ≈ 10−6 Torr by employing resistive heating. They were annealed at various temperatures ranging from 373 to 773K based on differential scanning calorimetric studies carried out on the ribbons. The magnetic characteristics were investigated using vibrating sample magnetometry. Morphological characterizations were carried out using atomic force microscopy (AFM), and magnetic force microscopy (MFM) imaging is used to study the domain characteristics. The variation of magnetic properties with thermal annealing is also investigated. From AFM and MFM images it can be inferred that the crystallization temperature of the as-prepared films are lower than their bulk counterparts. Also there is a progressive evolution of coercivity up to 573 K, which is an indication of the lowering of nano-crystallization temperature in thin films. The variation of coercivity with the structural evolution of the thin films with annealing is discussed and a plausible explanation is provided using the modified random anisotropy model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metglas 2826 MB having a nominal composition of Fe40Ni38Mo4B18 is an excellent soft magnetic material and finds application in sensors and memory heads. However, the thin-film forms of Fe40Ni38Mo4B18 are seldom studied, although they are important in micro-electro-mechanical systems/nano-electromechanical systems devices. The stoichiometry of the film plays a vital role in determining the structural and magnetic properties of Fe40Ni38Mo4B18 thin films: retaining the composition in thin films is a challenge. Thin films of 52 nm thickness were fabricated by RF sputtering technique on silicon substrate from a target of nominal composition of Fe40Ni38Mo4B18. The films were annealed at temperatures of 400 °C and 600 °C. The micro-structural studies of films using glancing x-ray diffractometer (GXRD) and transmission electron microscope (TEM) revealed that pristine films are crystalline with (FeNiMo)23B6 phase. Atomic force microscope (AFM) images were subjected to power spectral density analysis to understand the probable surface evolution mechanism during sputtering and annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the film composition. The sluggish growth of crystallites with annealing is attributed to the presence of molybdenum in the thin film. The observed changes in magnetic properties were correlated with annealing induced structural, compositional and morphological changes