175 resultados para AlGaN
Resumo:
In this paper, platinum (Pt) with a thickness of 45 nm was sputtered on the surface of AlGaN/GaN heterostructure to form the Schottky contact and the back-to-back Schottky diodes were characterized for H-2 sensing at room temperature. Both the forward and reverse current of the devices increased with exposure to H-2 gas, which was attributed to Schottky barrier height reduction caused by hydrogen absorption in the catalytic metals. A shift of 0.7 V at 297 K was obtained at a fixed forward current of 0.1 mA after switching from N-2 to 40% H-2 in N-2. The sensor's responses under different concentrations from 2500 ppm H-2 to 40% H-2 in N-2 at 297 K were investigated. Time response of the sensor at a fixed bias of 1 V was given. Finally, the decrease of the Schottky barrier height and the sensitivity of the sensor were calculated. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A novel AlGaN/GaN/GaN/GaN double heterojunction high electron mobility transistors (DH-HEMTS) structure with an AlN interlayer on sapphire substrate has been grown by MOCVD. The structure featured a 6-10 nm In0.1Ga0.9N layer inserted between the GaN channel and GaN buffer. And wer also inserted one ultrathin. AlN interlayer into the Al/GaN/GaN interface, which significantly enhanced the mobility of two-dimensional electron gas (2DEG) existed in the GaN channel. AFM result of this structure shows a good surface morphology and a low dislocation density, with the root-mean-square roughness (RMS) of 0.196 nm for a scan area of 5 mu m x 5 mu m. Temperature dependent Hall measurement was performed on this sample, and a mobility as high as 1950 cm(2)/Vs at room temperature (RT) was obtained. The sheet carrier density was 9.89 x10(12) cm(2), and average sheet resistance of 327 Omega/sq was achieved. The mobility obtained in this paper is about 50% higher than other results of similar structures which have been reported. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
AlxGa1-xN layer was grown on sapphire substrate with GaN template by Metal Organic Chemical Vapor Deposition system (MOCVD). High temperature A1N (HT-A1N) interlayer was inserted between AlxGa1-xN layer and GaN template to solve the cracking problem that often appears on AlxGa1-xN surface when directly grown on high temperature GaN template. Optical microscope, scanning electron microscopy (SEM), atomic force microscope (AFM), high resolution x-ray diffraction (HRXRD) and cathodoluminescence (CL) were used for characterization. It was found that the cracking was successfully eliminated. Furthermore, the crystalline quality of AlxGa1-xN layer with HT-A1N interlayer was much improved. Interference fringes were found in the HRXRD images. CL test showed that yellow emission was much reduced for AlGaN layer with HT-A1N interlayer.
Resumo:
We investigated AlGaN layers grown by metalorganic chemical vapor deposition (MOCVD) on high temperature (HT-)GaN and AlGaN buffer layers. On GaN buffer layer, there are a lot of surface cracking because of tensile strain in subsequent AlGaN epilayers. On HT-AlGaN buffer layer, not only cracks but also high densities rounded pits present, which is related to the high density of coalescence boundaries in HT-AlGaN growth process.The insertion of interlayer (IL) between AlGaN and the GaN pseudosubstrate can not only avoid cracking by modifying the strain status of the epilayer structure, but also improved Al incorporation efficiency and lead to phase-separation. And we also found the growth temperature of IL is a critical parameter for crystalline quality of subsequent AlGaN epilayer. Low temperature (LT-) A1N IL lead to a inferior quality in subsequent AlGaN epilayers.
Resumo:
When AlGaN is grown on GaN template, crack networks invariably generate when the thickness of the AlGaN layers over GaN exceeds the critical value. We used thin high temperature deposited AlN layer (HT-AlN) as the interlayer between GaN template and AlGaN epilayer which was very effective in eliminating the cracks in AlGaN epilayer. AlGaN layers with high Al mole fractions were also grown. Characterization showed that the crystalline quality of AlGaN epilayer was fairly good even when the At mole fraction was high.
Resumo:
AlGaN/AlN/GaN/InGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) structures with improved buffer isolation have been investigated. The structures were grown by MOCVD on sapphire substrate. AFM result of this structure shows a good surface morphology with the root-mean-square roughness (RMS) of 0.196 nm for a scan area of 5 mu mx5 mu m. A mobility as high as 1950 cm(2)/Vs with the sheet carrier density of 9.89x10(12) cm(-2) was obtained, which was about 50% higher than other results of similar structures which have been reported. Average sheet resistance of 327 Omega/sq was achieved. The HEMTs device using the materials was fabricated, and a maximum drain current density of 718.5 mA/mm, an extrinsic transconductance of 248 mS/mm, a current gain cutoff frequency of 16 GHz and a maximum frequency of oscillation 35 GHz were achieved.
Resumo:
An AlGaN/GaN HBT structure was grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. From the high-resolution x-ray diffraction and transmission electron microscopy (TEM) measurements, it was indicated that the structure is of good quality and the AlGaN/GaN interfaces are abrupt and smooth. In order to obtain the values of Si doping and electronic concentrations in the AlGaN emitter and GaN emitter cap layers, Secondary Ion Mass Spectroscopy (SIMS) and electrochemical CV measurements were carried out. The results showed that though the flow rate of silane (SiH4) in growing the AlGaN emitter was about a quarter of that in growing GaN emitter cap and subcollector layer, the Si sputtering yield in GaN cap layer was much smaller than that in the AlGaN emitter layer. The electronic concentration in GaN was about half of that in the AlGaN emitter layer. It is proposed that the Si, Al co-doping in growing the AlGaN emitter layer greatly enhances the Si dopant efficiency in the AlGaN alloy. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.
Resumo:
We report on high magnetic fields (up to 40 T) cyclotron resonance, quantum Hall effect and Shubnikov-de-Hass measurements in high frequency transistors based on Si-doped GaN-AlGaN heterojunctions. A simple way of precise modelling of the cyclotron absorption in these heterojunctions is presented, We clearly establish two-dimensional electrons to be the dominant conducting carriers and determine precisely their in-plane effective mass to be 0.230 +/- 0.005 of the free electron effective mass. The increase of the effective mass with an increase of two-dimensional carrier density is observed and explained by the nonparabolicity effect. (C) 1997 American Institute of Physics.
Resumo:
The influence of annealed ohmic contact metals on the electron mobility of a two dimensional electron gas (2DEG) is investigated on ungated AlGaN/GaN heterostructures and AlGaN/GaN heterostructure field effect transistors (AlGaN/GaN HFETs). Current-voltage (I-V) characteristics for ungated AlGaN/GaN heterostructures and capacitance-voltage (C-V) characteristics for AlGaN/GaN HFETs are obtained, and the electron mobility for the ungated AlGaN/GaN heterostructure is calculated. It is found that the electron mobility of the 2DEG for the ungated AlGaN/GaN heterostructure is decreased by more than 50% compared with the electron mobility of Hall measurements. We propose that defects are introduced into the AlGaN barrier layer and the strain of the AlGaN barrier layer is changed during the annealing process of the source and drain, causing the decrease in the electron mobility.
Resumo:
We propose and fabricate an A1GaN/GaN high electron mobility transistor (HEMT) on sapphire substrate using a new kind of electron beam (EB) lithography layout for the T-gate. Using this new layout,we can change the aspect ratio (ratio of top gate dimension to gate length) and modify the shape of the T-gate freely. Therefore, we obtain a 0.18μm gate-length AlGaN/GaN HEMT with a unity current gain cutoff frequency (f_T) of 65GHz. The aspect ratio of the T-gate is 10. These single finger devices also exhibit a peak extrinsic transconductance of 287mS/mm and a maximum drain current as high as 980mA/mm.
Resumo:
研究了基于AlGaN/GaN型结构的气敏传感器对于C0的传感性.制备出AlGaN/GaN型气敏传感器器件,并测试得到了器件在50℃时对于不同浓度(1%,9000,8000,5000和1000ppm)的C0的响应情况;测试并分析了1%CO在50和100℃下响应度的差异,计算了通人1%CO前后器件的肖特基势垒高度的变化和灵敏度随电压的分布关系.结果表明,器件的灵敏度强烈依赖于器件的工作温度和通入的气体浓度,随着温度和浓度的增加,器件的灵敏度呈单调增加,器件在100℃空气气氛中表现出了良好恢复性能.
Resumo:
研制成功具有场板结构的AlGaN/GaN HEMT器件,对源场板、栅场板器件的性能进行了分析.场板的引入减小了器件漏电和肖特基漏电,提高了肖特基反向击穿电压.源漏间距4μm的HEMT的击穿电压由常规器件的65V提高到100V以上,肖特基反向漏电由37μA减小到5.7μA,减小了一个量级.肖特基击穿电压由常规结构的78V提高到100V以上.另外,还初步讨论了高频特性.
Resumo:
通过溅射的方法制作了Pt/AIGaN/GaN背对背肖特基二极管并测试了该器件对氢气的响应.研究了Pt/AlGaN/GaN背对背肖特基二极管在25和100℃时对于10%H_2(N_2气中)的响应,计算了器件的灵敏度;并比较了两种温度条件下器件对于氢气响应的快慢;空气中的氧气对于器件电流的恢复有重要的作用;最后由热电子发射公式计算了器件在通人10%的氢气前后有效势垒高度的变化.
Resumo:
采用p-AlGa1-xN/i-GaN/n-GaN异质结构成功制备了含铝组分分别为0.1和0.07的正照射可见盲紫外探测器,并分别测试了它们的伏安特性曲线和光电响应光谱。对于Al组分为0.1的器件,在零偏压处出现了板低的暗电流密度,表明器件具有非常高的信噪比。高分辨率X射线衍射仪对材料的测试结果表明,高铝组分(0.1)窗口层薄膜材料的晶体质量较差,导致暗电流增大,而其窗口层的窗口选择作用则可以得到较高的响应率和较宽的响应波段。
Resumo:
近年来短波长紫外LED巨大的应用价值引起了人们的高度关注,成为了全球半导体领域研究和投资的新热点。本文综合分析了AlGaN材料的生长、碎裂、掺杂和欧姆接触等问题,对UV—LED的发展历程、技术路线和研究进展进行了详细介绍,并展望了未来发展方向。