92 resultados para sovellettu matematiikka
Resumo:
It is well known that an integrable (in the sense of Arnold-Jost) Hamiltonian system gives rise to quasi-periodic motion with trajectories running on invariant tori. These tori foliate the whole phase space. If we perturb an integrable system, the Kolmogorow-Arnold-Moser (KAM) theorem states that, provided some non-degeneracy condition and that the perturbation is sufficiently small, most of the invariant tori carrying quasi-periodic motion persist, getting only slightly deformed. The measure of the persisting invariant tori is large together with the inverse of the size of the perturbation. In the first part of the thesis we shall use a Renormalization Group (RG) scheme in order to prove the classical KAM result in the case of a non analytic perturbation (the latter will only be assumed to have continuous derivatives up to a sufficiently large order). We shall proceed by solving a sequence of problems in which theperturbations are analytic approximations of the original one. We will finally show that the approximate solutions will converge to a differentiable solution of our original problem. In the second part we will use an RG scheme using continuous scales, so that instead of solving an iterative equation as in the classical RG KAM, we will end up solving a partial differential equation. This will allow us to reduce the complications of treating a sequence of iterative equations to the use of the Banach fixed point theorem in a suitable Banach space.
Resumo:
The monograph dissertation deals with kernel integral operators and their mapping properties on Euclidean domains. The associated kernels are weakly singular and examples of such are given by Green functions of certain elliptic partial differential equations. It is well known that mapping properties of the corresponding Green operators can be used to deduce a priori estimates for the solutions of these equations. In the dissertation, natural size- and cancellation conditions are quantified for kernels defined in domains. These kernels induce integral operators which are then composed with any partial differential operator of prescribed order, depending on the size of the kernel. The main object of study in this dissertation being the boundedness properties of such compositions, the main result is the characterization of their Lp-boundedness on suitably regular domains. In case the aforementioned kernels are defined in the whole Euclidean space, their partial derivatives of prescribed order turn out to be so called standard kernels that arise in connection with singular integral operators. The Lp-boundedness of singular integrals is characterized by the T1 theorem, which is originally due to David and Journé and was published in 1984 (Ann. of Math. 120). The main result in the dissertation can be interpreted as a T1 theorem for weakly singular integral operators. The dissertation deals also with special convolution type weakly singular integral operators that are defined on Euclidean spaces.
Resumo:
Let X be a topological space and K the real algebra of the reals, the complex numbers, the quaternions, or the octonions. The functions form X to K form an algebra T(X,K) with pointwise addition and multiplication.
We study first-order definability of the constant function set N' corresponding to the set of the naturals in certain subalgebras of T(X,K).
In the vocabulary the symbols Constant, +, *, 0', and 1' are used, where Constant denotes the predicate defining the constants, and 0' and 1' denote the constant functions with values 0 and 1 respectively.
The most important result is the following. Let X be a topological space, K the real algebra of the reals, the compelex numbers, the quaternions, or the octonions, and R a subalgebra of the algebra of all functions from X to K containing all constants. Then N' is definable in
Resumo:
The topic of this dissertation is the geometric and isometric theory of Banach spaces. This work is motivated by the known Banach-Mazur rotation problem, which asks whether each transitive separable Banach space is isometrically a Hilbert space. A Banach space X is said to be transitive if the isometry group of X acts transitively on the unit sphere of X. In fact, some weaker symmetry conditions than transitivity are studied in the dissertation. One such condition is an almost isometric version of transitivity. Another investigated condition is convex-transitivity, which requires that the closed convex hull of the orbit of any point of the unit sphere under the rotation group is the whole unit ball. Following the tradition developed around the rotation problem, some contemporary problems are studied. Namely, we attempt to characterize Hilbert spaces by using convex-transitivity together with the existence of a 1-dimensional bicontractive projection on the space, and some mild geometric assumptions. The convex-transitivity of some vector-valued function spaces is studied as well. The thesis also touches convex-transitivity of Banach lattices and resembling geometric cases.
Resumo:
The concept of an atomic decomposition was introduced by Coifman and Rochberg (1980) for weighted Bergman spaces on the unit disk. By the Riemann mapping theorem, functions in every simply connected domain in the complex plane have an atomic decomposition. However, a decomposition resulting from a conformal mapping of the unit disk tends to be very implicit and often lacks a clear connection to the geometry of the domain that it has been mapped into. The lattice of points, where the atoms of the decomposition are evaluated, usually follows the geometry of the original domain, but after mapping the domain into another this connection is easily lost and the layout of points becomes seemingly random. In the first article we construct an atomic decomposition directly on a weighted Bergman space on a class of regulated, simply connected domains. The construction uses the geometric properties of the regulated domain, but does not explicitly involve any conformal Riemann map from the unit disk. It is known that the Bergman projection is not bounded on the space L-infinity of bounded measurable functions. Taskinen (2004) introduced the locally convex spaces LV-infinity consisting of measurable and HV-infinity of analytic functions on the unit disk with the latter being a closed subspace of the former. They have the property that the Bergman projection is continuous from LV-infinity onto HV-infinity and, in some sense, the space HV-infinity is the smallest possible substitute to the space H-infinity of analytic functions. In the second article we extend the above result to a smoothly bounded strictly pseudoconvex domain. Here the related reproducing kernels are usually not known explicitly, and thus the proof of continuity of the Bergman projection is based on generalised Forelli-Rudin estimates instead of integral representations. The minimality of the space LV-infinity is shown by using peaking functions first constructed by Bell (1981). Taskinen (2003) showed that on the unit disk the space HV-infinity admits an atomic decomposition. This result is generalised in the third article by constructing an atomic decomposition for the space HV-infinity on a smoothly bounded strictly pseudoconvex domain. In this case every function can be presented as a linear combination of atoms such that the coefficient sequence belongs to a suitable Köthe co-echelon space.
Resumo:
We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.
Composition operators, Aleksandrov measures and value distribution of analytic maps in the unit disc
Resumo:
A composition operator is a linear operator that precomposes any given function with another function, which is held fixed and called the symbol of the composition operator. This dissertation studies such operators and questions related to their theory in the case when the functions to be composed are analytic in the unit disc of the complex plane. Thus the subject of the dissertation lies at the intersection of analytic function theory and operator theory. The work contains three research articles. The first article is concerned with the value distribution of analytic functions. In the literature there are two different conditions which characterize when a composition operator is compact on the Hardy spaces of the unit disc. One condition is in terms of the classical Nevanlinna counting function, defined inside the disc, and the other condition involves a family of certain measures called the Aleksandrov (or Clark) measures and supported on the boundary of the disc. The article explains the connection between these two approaches from a function-theoretic point of view. It is shown that the Aleksandrov measures can be interpreted as kinds of boundary limits of the Nevanlinna counting function as one approaches the boundary from within the disc. The other two articles investigate the compactness properties of the difference of two composition operators, which is beneficial for understanding the structure of the set of all composition operators. The second article considers this question on the Hardy and related spaces of the disc, and employs Aleksandrov measures as its main tool. The results obtained generalize those existing for the case of a single composition operator. However, there are some peculiarities which do not occur in the theory of a single operator. The third article studies the compactness of the difference operator on the Bloch and Lipschitz spaces, improving and extending results given in the previous literature. Moreover, in this connection one obtains a general result which characterizes the compactness and weak compactness of the difference of two weighted composition operators on certain weighted Hardy-type spaces.
Resumo:
We study a Hamiltonian describing a pendulum coupled with several anisochronous oscillators, giving a simple construction of unstable KAM tori and their stable and unstable manifolds for analytic perturbations. When the coupling takes place through an even trigonometric polynomial in the angle variables, we extend analytically the solutions of the equations of motion, order by order in the perturbation parameter, to a large neighbourhood of the real line representing time. Subsequently, we devise an asymptotic expansion for the splitting (matrix) associated with a homoclinic point. This expansion consists of contributions that are manifestly exponentially small in the limit of vanishing gravity, by a shift-of-countour argument. Hence, we infer a similar upper bound for the splitting itself. In particular, the derivation of the result does not call for a tree expansion with explicit cancellation mechanisms.
Resumo:
This thesis studies homogeneous classes of complete metric spaces. Over the past few decades model theory has been extended to cover a variety of nonelementary frameworks. Shelah introduced the abstact elementary classes (AEC) in the 1980s as a common framework for the study of nonelementary classes. Another direction of extension has been the development of model theory for metric structures. This thesis takes a step in the direction of combining these two by introducing an AEC-like setting for studying metric structures. To find balance between generality and the possibility to develop stability theoretic tools, we work in a homogeneous context, thus extending the usual compact approach. The homogeneous context enables the application of stability theoretic tools developed in discrete homogeneous model theory. Using these we prove categoricity transfer theorems for homogeneous metric structures with respect to isometric isomorphisms. We also show how generalized isomorphisms can be added to the class, giving a model theoretic approach to, e.g., Banach space isomorphisms or operator approximations. The novelty is the built-in treatment of these generalized isomorphisms making, e.g., stability up to perturbation the natural stability notion. With respect to these generalized isomorphisms we develop a notion of independence. It behaves well already for structures which are omega-stable up to perturbation and coincides with the one from classical homogeneous model theory over saturated enough models. We also introduce a notion of isolation and prove dominance for it.
Resumo:
Planar curves arise naturally as interfaces between two regions of the plane. An important part of statistical physics is the study of lattice models. This thesis is about the interfaces of 2D lattice models. The scaling limit is an infinite system limit which is taken by letting the lattice mesh decrease to zero. At criticality, the scaling limit of an interface is one of the SLE curves (Schramm-Loewner evolution), introduced by Oded Schramm. This family of random curves is parametrized by a real variable, which determines the universality class of the model. The first and the second paper of this thesis study properties of SLEs. They contain two different methods to study the whole SLE curve, which is, in fact, the most interesting object from the statistical physics point of view. These methods are applied to study two symmetries of SLE: reversibility and duality. The first paper uses an algebraic method and a representation of the Virasoro algebra to find common martingales to different processes, and that way, to confirm the symmetries for polynomial expected values of natural SLE data. In the second paper, a recursion is obtained for the same kind of expected values. The recursion is based on stationarity of the law of the whole SLE curve under a SLE induced flow. The third paper deals with one of the most central questions of the field and provides a framework of estimates for describing 2D scaling limits by SLE curves. In particular, it is shown that a weak estimate on the probability of an annulus crossing implies that a random curve arising from a statistical physics model will have scaling limits and those will be well-described by Loewner evolutions with random driving forces.
Resumo:
The object of this dissertation is to study globally defined bounded p-harmonic functions on Cartan-Hadamard manifolds and Gromov hyperbolic metric measure spaces. Such functions are constructed by solving the so called Dirichlet problem at infinity. This problem is to find a p-harmonic function on the space that extends continuously to the boundary at inifinity and obtains given boundary values there. The dissertation consists of an overview and three published research articles. In the first article the Dirichlet problem at infinity is considered for more general A-harmonic functions on Cartan-Hadamard manifolds. In the special case of two dimensions the Dirichlet problem at infinity is solved by only assuming that the sectional curvature has a certain upper bound. A sharpness result is proved for this upper bound. In the second article the Dirichlet problem at infinity is solved for p-harmonic functions on Cartan-Hadamard manifolds under the assumption that the sectional curvature is bounded outside a compact set from above and from below by functions that depend on the distance to a fixed point. The curvature bounds allow examples of quadratic decay and examples of exponential growth. In the final article a generalization of the Dirichlet problem at infinity for p-harmonic functions is considered on Gromov hyperbolic metric measure spaces. Existence and uniqueness results are proved and Cartan-Hadamard manifolds are considered as an application.
Resumo:
We study integral representations of Gaussian processes with a pre-specified law in terms of other Gaussian processes. The dissertation consists of an introduction and of four research articles. In the introduction, we provide an overview about Volterra Gaussian processes in general, and fractional Brownian motion in particular. In the first article, we derive a finite interval integral transformation, which changes fractional Brownian motion with a given Hurst index into fractional Brownian motion with an other Hurst index. Based on this transformation, we construct a prelimit which formally converges to an analogous, infinite interval integral transformation. In the second article, we prove this convergence rigorously and show that the infinite interval transformation is a direct consequence of the finite interval transformation. In the third article, we consider general Volterra Gaussian processes. We derive measure-preserving transformations of these processes and their inherently related bridges. Also, as a related result, we obtain a Fourier-Laguerre series expansion for the first Wiener chaos of a Gaussian martingale. In the fourth article, we derive a class of ergodic transformations of self-similar Volterra Gaussian processes.
Resumo:
This thesis consists of three articles on Orlicz-Sobolev capacities. Capacity is a set function which gives information of the size of sets. Capacity is useful concept in the study of partial differential equations, and generalizations of exponential-type inequalities and Lebesgue point theory, and other topics related to weakly differentiable functions such as functions belonging to some Sobolev space or Orlicz-Sobolev space. In this thesis it is assumed that the defining function of the Orlicz-Sobolev space, the Young function, satisfies certain growth conditions. In the first article, the null sets of two different versions of Orlicz-Sobolev capacity are studied. Sufficient conditions are given so that these two versions of capacity have the same null sets. The importance of having information about null sets lies in the fact that the sets of capacity zero play similar role in the Orlicz-Sobolev space setting as the sets of measure zero do in the Lebesgue space and Orlicz space setting. The second article continues the work of the first article. In this article, it is shown that if a Young function satisfies certain conditions, then two versions of Orlicz-Sobolev capacity have the same null sets for its complementary Young function. In the third article the metric properties of Orlicz-Sobolev capacities are studied. It is usually difficult or impossible to calculate a capacity of a set. In applications it is often useful to have estimates for the Orlicz-Sobolev capacities of balls. Such estimates are obtained in this paper, when the Young function satisfies some growth conditions.
Resumo:
Quasiconformal mappings are natural generalizations of conformal mappings. They are homeomorphisms with 'bounded distortion' of which there exist several approaches. In this work we study dimension distortion properties of quasiconformal mappings both in the plane and in higher dimensional Euclidean setting. The thesis consists of a summary and three research articles. A basic property of quasiconformal mappings is the local Hölder continuity. It has long been conjectured that this regularity holds at the Sobolev level (Gehring's higher integrabilty conjecture). Optimal regularity would also provide sharp bounds for the distortion of Hausdorff dimension. The higher integrability conjecture was solved in the plane by Astala in 1994 and it is still open in higher dimensions. Thus in the plane we have a precise description how Hausdorff dimension changes under quasiconformal deformations for general sets. The first two articles contribute to two remaining issues in the planar theory. The first one concerns distortion of more special sets, for rectifiable sets we expect improved bounds to hold. The second issue consists of understanding distortion of dimension on a finer level, namely on the level of Hausdorff measures. In the third article we study flatness properties of quasiconformal images of spheres in a quantitative way. These also lead to nontrivial bounds for their Hausdorff dimension even in the n-dimensional case.
Resumo:
Malli on logiikassa käytetty abstraktio monille matemaattisille objekteille. Esimerkiksi verkot, ryhmät ja metriset avaruudet ovat malleja. Äärellisten mallien teoria on logiikan osa-alue, jossa tarkastellaan logiikkojen, formaalien kielten, ilmaisuvoimaa malleissa, joiden alkioiden lukumäärä on äärellinen. Rajoittuminen äärellisiin malleihin mahdollistaa tulosten soveltamisen teoreettisessa tietojenkäsittelytieteessä, jonka näkökulmasta logiikan kaavoja voidaan ajatella ohjelmina ja äärellisiä malleja niiden syötteinä. Lokaalisuus tarkoittaa logiikan kyvyttömyyttä erottaa toisistaan malleja, joiden paikalliset piirteet vastaavat toisiaan. Väitöskirjassa tarkastellaan useita lokaalisuuden muotoja ja niiden säilymistä logiikkoja yhdistellessä. Kehitettyjä työkaluja apuna käyttäen osoitetaan, että Gaifman- ja Hanf-lokaalisuudeksi kutsuttujen varianttien välissä on lokaalisuuskäsitteiden hierarkia, jonka eri tasot voidaan erottaa toisistaan kasvavaa dimensiota olevissa hiloissa. Toisaalta osoitetaan, että lokaalisuuskäsitteet eivät eroa toisistaan, kun rajoitutaan tarkastelemaan äärellisiä puita. Järjestysinvariantit logiikat ovat kieliä, joissa on käytössä sisäänrakennettu järjestysrelaatio, mutta sitä on käytettävä siten, etteivät kaavojen ilmaisemat asiat riipu valitusta järjestyksestä. Määritelmää voi motivoida tietojenkäsittelyn näkökulmasta: vaikka ohjelman syötteen tietojen järjestyksellä ei olisi odotetun tuloksen kannalta merkitystä, on syöte tietokoneen muistissa aina jossakin järjestyksessä, jota ohjelma voi laskennassaan hyödyntää. Väitöskirjassa tutkitaan minkälaisia lokaalisuuden muotoja järjestysinvariantit ensimmäisen kertaluvun predikaattilogiikan laajennukset yksipaikkaisilla kvanttoreilla voivat toteuttaa. Tuloksia sovelletaan tarkastelemalla, milloin sisäänrakennettu järjestys lisää logiikan ilmaisuvoimaa äärellisissä puissa.