312 resultados para nitrogen excretion
Resumo:
We study the mutual passivation of shallow donor and isovalent N in GaAs. We find that all the donor impurities, Si-Ga, Ge-Ga, S-As, and Se-As, bind to N in GaAsN, which has a large N-induced band-gap reduction relative to GaAs. For a group-IV impurity such as Si, the formation of the nearest-neighbor Si-Ga-N-As defect complex creates a deep donor level below the conduction band minimum (CBM). The coupling between this defect level with the CBM pushes the CBM upwards, thus restoring the GaAs band gap; the lowering of the defect level relative to the isolated Si-Ga shallow donor level is responsible for the increased electrical resistivity. Therefore, Si and N mutually passivate each other's electrical and optical activities in GaAs. For a group-VI shallow donor such as S, the binding between S-As and N-As does not form a direct bond; therefore, no mutual passivation exists in the GaAs(S+N) system.
Resumo:
Electron mobility limited by nitrogen vacancy scattering was taken into account to evaluate the quality of n-type GaN grown by metal-organic vapor phase epitaxy. Two assumptions were made for this potential for the nitrogen vacancy (1) it acts in a short range, and (2) does not diverge at the vacancy core. According to the above assumptions, a general expression to describe the scattering potential U(r) = - U-0 exp[- (r/beta)(n)], (n = 1, 2,...,infinity) was constructed, where beta is the potential well width. The mobilities for n = 1, 2, and infinity were calculated based on this equation, corresponding to the simple exponential, Gaussian and square well scattering potentials, respectively. In the limiting case of kbeta << 1 (where k is the wave vector), all of the mobilities calculated for n = 1, 2, and infinity showed a same result but different prefactor. Such difference was discussed in terms of the potential tail and was found that all of the calculated mobilities have T-1/2 temperature and beta(-6) well width dependences. A mobility taking account of a spatially complicate scattering potential was studied and the same temperature dependence was also found. A best fit between the calculated results and experimental data was obtained by taking account of the nitrogen vacancy scattering. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We have investigated the optical transitions in Ga1-yInyNxAs1-x/GaAs single and multiple quantum wells using photovoltaic measurements at room temperature. From a theoretical fit to the experimental data, the conduction band offset Q(c), electron effective mass m(e)*, and band gap energy E-g were estimated. It was found that the Q(c) is dependent on the indium concentration, but independent on the nitrogen concentration over the range x=(0-1)%. The m(e)* of GaInNAs is much greater than that of InGaAs with the same concentration of indium, and increases as the nitrogen concentration increases up to 1%. Our experimental results for the m(e)* and E-g of GaInNAs are quantitatively explained by the two-band model based on the strong interaction of the conduction band minimum with the localized N states. (C) 2001 American Institute of Physics.
Resumo:
Electron mobility limited by nitrogen vacancy scattering was taken into account to evaluate the quality of n-type GaN grown by metal-organic vapor phase epitaxy. The nitrogen vacancy scattering potential used for our mobility calculation has to satisfy two requirements: such potential is (1) spatially short range, and (2) finite and not divergent at the vacancy core. A square-well potential was adopted to calculate the mobility, because it satisfies not only these two requirements, but also simplifies the calculation. As a result, the estimated mobility shows a T-1/2 temperature dependence, and is very sensitive to the potential well width. After introducing the nitrogen vacancy scattering, we obtained the best fitting between the calculated and experimental results for our high quality sample, and it was found that the measured mobility is dominated by ion impurity and dislocation scatterings at the low temperatures, but dominated by optical phonon and nitrogen vacancy scatterings at the high temperatures. (C) 2000 American Institute of Physics. [S0003-6951(00)04112-7].
Resumo:
The photoluminescence (PL) properties of nitrogen-doped ZnSe epilayers grown on semi-insulating GaAs(100) substrates by MBE using a rf-plasma source for N doping were investigated. The PL peak which can be related to N acceptor was observed in the PL spectra of ZnSe:N smaples. At 10K, as the excitation power density increases, the energy of donor-acceptor pair(DAP) emission shows a blue-shift and its intensity tends to saturate. As the temperature increases over a range from 10K to 300K, the relative PL intensity of donor bound exciton to that of the acceptor bound exciton increases due to the transfer between two bound excitons.
Resumo:
We have investigated the photoluminescence (PL) properties of nitrogen-doped ZnSe epilayers grown by molecular beam epitaxy using a nitrogen radio frequency-plasma source. The PL data shows that the relative intensity of the donor-bound exciton (I-2) emission to the acceptor-bound exciton (I-1) emission strongly depends on both the excitation power and the temperature. This result is explained by a thermalization model of the bound exciton which involved in the capture and emission between the neutral donor bound exciton, the neutral acceptor bound exciton and the free exciton. Quantitative analysis with the proposed mechanism is in good agreement with the experimental data. (C) 1999 American Institute of Physics. [S0021-8979(99)09102-1].
Resumo:
With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Liquid nitrogen is very important for MBE system. Most MBE systems use the liquid nitrogen to absorb the impurity molecules. If MBE cryoshroud is lack of liquid nitrogen, the pressure of the growth chamber will grow. This will affect the film quality. But too much liquid nitrogen is a waste. We have developed a liquid nitrogen flowrate alarm system to monitor the liquid nitrogen status in MBE cryoshroud. In this method, a temperature sensor is placed at the end of the cryoshroud. The temperature varies with changing of the liquid nitrogen status in cryoshroud. If the liquid nitrogen level in the cryoshroud is too low or too high, the LNFA will send out an alarm to warn the user to adjust the liquid nitrogen flowrate. In our experiments, we found this method works well, and the temperature responds sensitively. With the help of this system, people can view the liquid nitrogen status of the entire growth process. Compare with other method. it is very cheap.
Resumo:
This work was supported by the National Research Projects of China (grant numbers are 60525406, 60736031, 60806018, 60906026, 2006CB604903, 2007AA03Z446 and 2009AA03Z403, 10990100, respectively). The authors would like to thank P Liang, Y Hu, H Sun, X L Zhang, B J Sun, H L Zhen and N Li for their help in processing and characterization.
Resumo:
A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data.
Resumo:
The composition and microstructure of buried layers of AlN formed by high energy N+ ion implantation into polycrystalline Al have been determined. Both bulk and evaporated thin films of Al have been implanted with 100 and 200 keV N+ ions to doses of up to 1.8 x 10(18)/cm2. The layers have been characterised using SIMS, XTEM, X-ray diffraction, FTIR, RBS and in terms of their microhardness. It is found that, for doses greater than the critical dose, buried, polycrystalline AlN layers are formed with preferred (100) or (002) orientations, which are sample specific. With increasing dose the nitrogen concentration saturates at the value for stoichiometric AlN although the synthesised compound is found to be rich in oxygen.
Resumo:
In this paper we report on the first results of epitaxial growth of GaN layers on GaAs (100) substrates using a modified MBE system, equipped with a DC-plasma source for nitrogen activation in configuration of reverse magnetron at ultra-low pressures.
Resumo:
Dislocation movement in N-doped Czochralski silicon (Cz-Si) was surveyed by four point bend method. Dislocation movement velocities in Cz-Si doped with nitrogen, with both nitrogen and antimony, and with only antimony were investigated. The order of measured dislocation movement velocities, at 700 degrees C less than or equal to T less than or equal to 800 degrees C and under resolved stress sigma=4.1 kg/mm(2), was V-Sb.O > V-n.Sb.O>V-N.O. The experiments showed that nigtrogen doping could retard the movement of dislocations.