444 resultados para Electrochemical etching
Resumo:
Residual defects in the overlayer of fully annealed SIMOX material have been studied by means of a chemical etching technique. The etching procedure has been calibrated and an optimum recipe is reported. Observations using optical microscopy and transmission electron microscopy have been used to quantify the defect densities and good agreement between the two techniques has been established, confirming that the optimised chemical etching process can be used with confidence to determine the dislocation density for values < 10(7) cm-2.
Resumo:
The dislocations and precipitates in SI-GaAs single crystals are revealed by ultrasonic-aided Abrahams-Buiocchi etching (USAB), and the etch pits are observed and measured by metalloscope and scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), respectively. The size of etch pit revealed by USAB etching is about 1 order of magnitude smaller than that revealed by molten KOH. The amount of arsenic atoms in the dislocation-dense zone is about 1% larger than that in an adjacent dislocation-free zone measured by EDS attached to SEM, which indicates that the excess arsenic atoms adjacent to the dislocation-dense zone are attracted to the dislocations and precipitate there due to the deformation energy.
Resumo:
A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.
Resumo:
The defects and the lattice perfection of an AlN (0001) single crystal grown by the physical vapor transport (PVT) method were investigated by wet etching, X-ray diffraction (XRD), and infrared absorption, respectively. A regular hexagonal etch pit density (EPD) of about 4000 cm~(-2) is observed on the (0001) A1 surface of an AlN single crystal. The EPD exhibits a line array along the slip direction of the wurtzite structure, indicating a quite large thermal stress born by the crystal in the growth process. The XRD full width at half maximum (FWHM) of the single crystal is 35 arcsec, suggesting a good lattice perfection. Pronounced infrared absorption peaks are observed at wave numbers of 1790, 1850, 2000, and 3000 cm~(-1), respectively. These absorptions might relate to impurities O, C, Si and their complexes in AlN single crystals.
Resumo:
High power and high-slope efficiency 650nm band real-refractive-index ridge waveguide AlGaInP laser diodes with compressive strained MQW active layer are formed by pure Ar ion beam etching process.Symmetric laser mesas with high perpendicularity,which are impossible to obtain by traditional wet etching method due to the use of a 15°-misoriented substrate,are obtained by this dry etching method.Laser diodes with 4μm wide,600μm long and 10%/90% coat are fabricated.The typical threshold current of these devices is 46mA at room temperature,and a stable fundamental-mode operation over 40mW is obtained.Very high slope efficiency of 1.4W/A at 10mW and 1.1W/A at 40mW are realized.
Resumo:
SOI waveguides fabricated by wet-etching method are demonstrated. The single mode waveguide and 1×2 3dB BBI splitter are analyzed and designed by three dimensional beam propagation method to correct the error of effective index method and guided mode method. The devices are fabricated. Excellent performances, such as low propagation loss of -1.37dB/cm, low excess of -2.2dB, and good uniformity of 0.3dB, are achieved.
Resumo:
Wet etching characteristics of cubic GAN (c-GaN) thin films grown on GaAs(001) by metalorganic vapor phase epitaxy (MOVPE) are investigated. The samples are etched in HCl, H_3PO_4, KOH aqueous solutions, and molten KOH at temperatures in the range of 90~300 ℃. It is found that different solution produces different etch figure on the surfaces of a sample. KOH-based solutions produce rectangular pits rather than square pits. The etch pits elongate in [1(1-bar)0] direction, indicating asymmetric etching behavior in the two orthogonal <110> directions. An explanation based on relative reactivity of the various crystallographic planes is employed to interpret qualitatively the asymmetric etching behavior. In addition, it is found that KOH aqueous solution would be more suitable than molten KOH and the two acids for the evaluation of stacking faults in c-GaN epilayers.
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入
Resumo:
GaAs/AlGaAs quantum dot arrays with different dot sizes made by different fabrication processes were studied in this work. In comparison with the reference quantum well, photoluminescence (PL) spectra from the samples at low temperature have demonstrated that PL peak positions shift to higher energy side due to quantization confinement effects and the blue-shift increases with decreasing dot size, PL linewidths are broadened and intensities are much reduced. It is also found that wet chemical etching after reactive ion etching can improve optical properties of the quantum dot arrays.