949 resultados para Euterpe precatoria Mart


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n. La fecha, 2008, consta en la cub. de la revista, en la cabecera de los art??culos consta, por error, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n. La fecha, 2008, consta en la cub. de la revista, en la cabecera de los art??culos consta por error, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n. La fecha, 2008, consta en la cub. de la revista, en la cabecera de los art??culos consta, por error, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n. La fecha, 2008, consta en la cub. de la revista, en la cabecera de los art??culos consta, por error, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n. La fecha, 2008, consta en la cub. de la revista, en la cabecera de los art??culos consta, por error, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Ley Orgánica de Educación (LOE) aporta un claro marco de referencia en relación con la inserción de las TIC, en el proceso de enseñanza-aprendizaje de las distintas etapas educativas. El tratamiento de la información y competencia digital es una de las ocho competencias básicas que se establecen en los Reales Decretos de enseñanzas mínimas de la Educación Primaria y Secundaria Obligatoria. Como consecuencia es necesario que el profesorado esté preparado para afrontar este reto. Aunque la LOE hace referencia a la necesidad de uso de recursos y formación permanente en TIC para el profesorado el tratamiento parece insuficiente. En este artículo se analizan los estándares en competencias TIC para docentes (ECDTIC) de la UNESCO y de la organización norteamericana International Society for technology in Education (ISTE) y se apela a las administraciones educativas y las universidades para que tomen en consideración la importancia de revisar en profundidad los currículos de la formación inicial y permanente del profesorado.