258 resultados para Noice, Harold,
Resumo:
This paper reports the fabrication of SSOI (Silicon on Silicide On Insulator) substrates with active silicon regions only 0.5mum thick, incorporating LPCVD low resistivity tungsten silicide (WSix) as the buried layer. The substrates were produced using ion splitting and two stages of wafer bonding. Scanning acoustic microscope imaging confirmed that the bond interfaces are essentially void-free. These SSOI wafers are designed to be employed as substrates for mm-wave reflect-array diodes, and the required selective etch technology is described together with details of a suitable device.
Resumo:
This paper describes the creation of a germanium on sapphire platform, via wafer bonding technology, for system-on-a-chip applications. Similar thermal coefficients of expansion between germanium (5.8 x 10-6 K-1) and sapphire (5 x 10-6 K-1) make the bonding of germanium to sapphire a reality. Germanium directly bonded to sapphire results in microvoid generation during post bond annealing. Inclusion of an interface layer such as silicon dioxide layer by plasma enhanced chemical vapour deposition, prior to bonding, results in a microvoid free bond interface after annealing. Grinding and polishing of the subsequent germanium layer has been achieved leaving a thick germanium on sapphire (GeOS) substrate. Submicron GeOS layers have also been achieved with hydrogen/helium co-implantation and layer transfer. Circular geometry transistors exhibiting a field effect mobility of 890 cm2/V s have been fabricated onto the thick germanium on sapphire layer.
Resumo:
This paper explores the potential of germanium on sapphire (GeOS) wafers as a universal substrate for System on a Chip (SOC), mm wave integrated circuits (MMICs) and optical imagers. Ge has a lattice constant close to that of GaAs enabling epitaxial growth. Ge, GaAs and sapphire have relatively close temperature coefficients of expansion (TCE), enabling them to be combined without stress problems. Sapphire is transparent over the range 0.17 to 5.5 µm and has a very low loss tangent (a) for frequencies up to 72 GHz. Ge bonding to sapphire substrates has been investigated with regard to micro-voids and electrical quality of the Ge back interface. The advantages of a sapphire substrate for integrated inductors, coplanar waveguides and crosstalk suppression are also highlighted. MOS transistors have been fabricated on GeOS substrates, produced by the Smart-cut process, to illustrate the compatibility of the substrate with device processing. © 2008 World Scientific Publishing Company.