51 resultados para heterojunctions

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(110) ZnO/(001) Nb-1 wt %-doped SrTiO3 n-n type heteroepitaxial junctions were fabricated using the pulse laser deposition method. A diodelike current behavior was observed. Different from conventional p-n junctions or Schottky diodes, the diffusion voltage was found to increase with temperature. At all temperatures, the forward current was perfectly fitted on the thermionic emission model. The band bending at the interface can qualitatively explain our results, and the extracted high ideality factor at low temperatures, as well as large saturation currents, is ascribed to the deep-level-assisted tunneling current through the junction. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The valence band offsets of the wurtzite polar C-plane and nonpolar A-plane InN/ZnO heterojunctions are directly determined by x-ray photoelectron spectroscopy to be 1.76 +/- 0.2 eV and 2.20 +/- 0.2 eV. The heterojunctions form in the type-I straddling configuration with a conduction band offsets of 0.84 +/- 0.2 eV and 0.40 +/- 0.2 eV. The difference of valence band offsets of them mainly attributes to the spontaneous polarization effect. Our results show important face dependence for InN/ZnO heterojunctions, and the valence band offset of A-plane heterojunction is more close to the "intrinsic" valence band offset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experiments on high de current stressing in commercial III-V nitride based heterojunction light-emitting diodes. Stressing currents ranging from 100 mA to 200 mA were used. Degradations in the device properties were investigated through detailed studies of the current-voltage (I-V) characteristics, electroluminescence, deep-level transient Fourier spectroscopy and flicker noise. Our experimental data demonstrated significant distortions in the I-V characteristics subsequent to electrical stressing. The room temperature electro-luminescence of the devices exhibited a 25% decrement in the peak emission intensity. Concentration of the deep-levels was examined by deep-level transient Fourier spectroscopy, which indicated an increase in the density of deep-traps from 2.7 x 10(13) cm(-3) to 4.2 x 10(13) cm(-3) at E-1 = E-C - 1.1 eV. The result is consistent with our study of 1/f noise, which exhibited up to three orders of magnitude increase in the voltage noise power spectra. These traps are typically located at energy levels beyond the range that can be characterized by conventional techniques including DLTS. The two experiments, therefore, provide a more complete picture of trap generation due to high dc current stressing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experiments on hot-electron stressing in commercial III-V nitride based heterojunction fight-emitting diodes. Stressing currents ranging from 100 mA to 200 mA were used. Degradations in the device properties were investigated through detailed studies of the I-V characteristics, electroluminescence, Deep-Level Transient Fourier Spectroscopy and flicker noise. Our experimental data demonstrated significant distortions in the I-V characteristics. The room temperature electroluminescence of the devices exhibited 25% decrement in the peak emission intensity. Concentration of the deep-levels was examined by measuring the Deep-Level Transient Fourier Spectroscopy, which indicated an increase in the density of deep-traps from 2.7 x 10(13) cm(-3) to 4.21 x 10(13) cm(-3) at E-1 = E-C - 1.1eV. The result is consistent with our study of 1/f noise, which exhibited up to three orders of magnitude increase in the voltage noise power spectra. Our experiments show large increase in both the interface traps and deep-levels resulted from hot-carrier stressing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n-ZnO/p-Si heterojunction light-emitting diodes (LEDs) show weak defect-related electroluminescence (EL). In order to analyze the origin of the weak EL, the energy band alignment and interfacial microstructure of ZnO/Si heterojunction are investigated by x-ray photoelectron spectroscopy. The valence band offset (VBO) is determined to be 3.15 +/- 0.15 eV and conduction band offset is -0.90 +/- 0.15 eV, showing a type-II band alignment. The higher VBO means a high potential barrier for holes injected from Si into ZnO, and hence, charge carrier recombination takes place mainly on the Si side rather than the ZnO layer. It is also found that a 2.1 nm thick SiOx interfacial layer is formed at the ZnO/Si interface. The unavoidable SiOx interfacial layer provides to a large number of nonradiative centers at the ZnO/Si interface and gives rise to poor crystallinity in the ZnO films. The weak EL from the n-ZnO/p-Si LEDs can be ascribed to the high ZnO/Si VBO and existence of the SiOx interfacial layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N+ GaAs-n GaInP lattice-matched heterostructures, grown by metalorganic vapour phase epitaxy, have been studied by capacitance-voltage, current-voltage and current-temperature techniques. This allowed the determination of the conduction band offset in three different and independent ways. The value obtained (0.24-0.25 eV) has been verified by photoluminescence and photoluminescence excitation on a 90 angstrom thick GaAs well in GaInP grown under the same conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the charge transport in organic heterojunction films consisting of copper phthalocyanine (CuPc) and copper hexadecafluorophthalocyanine (F16CuPc). The heterojunction effect between CuPc and F16CuPc induced high-density carriers at both sides of heterojunction. The Hall effect was observed at room temperature, which demonstrated the existence of free carriers and their delocalized transport under heterojunction effect. The Hall mobility of 1.2 cm(2)/V s for holes and 2.4 cm(2)/V s for electrons indicated that the transport capability of the heterojunction films is comparable to single crystals. The transport process was further explained by the multiple trap-and-release model according to the temperature dependence of conduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical electron mobility limited by dislocation scattering of a two-dimensional electron gas confined near the interface of AlxGa1-xN/GaN heterostructures was calculated. Based on the model of treating dislocation as a charged line, an exponentially varied potential was adopted to calculate the mobility. The estimated mobility suggests that such a choice can simplify the calculation without introducing significant deviation from experimental data, and we obtained a good fitting between the calculated and experimental results. It was found that the measured mobility is dominated by interface roughness and dislocation scattering at low temperatures if dislocation density is relatively high (>10(9) cm(-2)), and accounts for the nearly flattening-out behavior with increasing temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The valence band offset (VBO) of the wurtzite ZnO/4H-SiC heterojunction is directly determined to be 1.61 +/- 0.23 eV by x-ray photoelectron spectroscopy. The conduction band offset is deduced to be 1.50 +/- 0.23 eV from the known VBO value, which indicates a type-II band alignment for this heterojunction. The experimental VBO value is confirmed and in good agreement with the calculated value based on the transitive property of heterojunctions between ZnO, SiC, and GaN. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin SiO2 interlayer is the key to improving the electroluminescence characteristics of light emitting diodes based on ZnO heterojunctions, but little is known of the band offsets of SiO2/ZnO. In this letter, energy band alignment of SiO2/ZnO interface was determined by x-ray photoelectron spectroscopy. The valence band offset Delta E-V of SiO2/ZnO interface is determined to be 0.93 +/- 0.15 eV. According to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V Delta E-C=E-g(SiO2)-E-g(ZnO)-Delta E-V, and taking the room-temperature band-gaps of 9.0 and 3.37 eV for SiO2 and ZnO, respectively, a type-I band-energy alignment of SiO2/ZnO interface with a conduction band offset of 4.70 +/- 0.15 eV is found. The accurate determination of energy band alignment of SiO2/ZnO is helpful for designing of SiO2/ZnO hybrid devices and is also important for understanding their carrier transport properties. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3204028]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin-orbit interactions in a two-dimensional electron gas were studied in an InAlAs/InGaAs/InAlAs quantum well. Since weak anti localization effects take place far beyond the diffusive regime, (i.e., the ratio of the characteristic magnetic field, at which the magnetoresistance correction maximum occurs, to the transport magnetic field is more than ten) the experimental data are examined by the Golub theory, which is applicable to both diffusive regime and ballistic regime. Satisfactory fitting lines to the experimental data have been achieved using the Golub theory. In the strong spin-orbit interaction two-dimensional electron gas system, the large spin splitting energy of 6.08 meV is observed mainly due to the high electron concentration in the quantum well. The temperature dependence of the phase-breaking rate is qualitatively in agreement with the theoretical predictions. (C) 2009 The Japan Society of Applied Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In2O3 is a promising partner of InN to form InN/In2O3 heterosystems. The valence band offset (VBO) of wurtzite InN/cubic In2O3 heterojunction is determined by x-ray photoemission spectroscopy. The valence band of In2O3 is found to be 1.47 +/- 0.11 eV below that of InN, and a type-I heterojunction with a conduction band offset (CBO) of 0.49-0.99 eV is found. The accurate determination of the VBO and CBO is important for use of InN/In2O3 based electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The well-width dependence of in-plane optical anisotropy (IPOA) in (001) GaAs/AlxGa1-xAs quantum wells induced by in-plane uniaxial strain and interface asymmetry has been studied comprehensively. Theoretical calculations show that the IPOA induced by in-plane uniaxial strain and interface asymmetry exhibits much different well-width dependence. The strain-induced IPOA is inversely proportional to the energy spacing between heavy- and light-hole subbands, so it increases with the well width. However, the interface-related IPOA is mainly determined by the probability that the heavy- and light-holes appear at the interfaces, so it decreases with the well width. Reflectance difference spectroscopy has been carried out to measure the IPOA of (001) GaAs/AlxGa1-xAs quantum wells with different well widths. Strain- and interface-induced IPOA have been distinguished by using a stress apparatus, and good agreement with the theoretical prediction is obtained. The anisotropic interface potential parameters are also determined. In addition, the energy shift between the interface- and strain-induced 1H1E reflectance difference (RD) structures, and the deviation of the 1L1E RD signal away from the prediction of the calculation model have been discussed.