479 resultados para 4H-SiC substrate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of single Cd2+ and Pb2+, and combined Cd2+ and Pb2+ on dehydrogenase activity and polysaccharide content of the substrate biofilms in the integrated vertical-flow constructed wetland (IVCW) were studied. Dehydrogenase activities decreased linearly with the increasing concentrations of Cd2+ and Pb2+ at different times (6, 24, 72, and 120 h). The activities at both 6 and 24 h were significantly higher than that at 72 and 120 h in the case of single and combined treatments. The single Cd2+ and Pb2+ treatments significantly inhibited dehydrogenase activities at concentrations in excess of 20 mu mol/L Cd2+ and 80 mu mol/L Pb2+, respectively. The inhibitory effect of Cd2+ was much greater than that of Pb2+. At the same time, the combined treatment of Cd2+ and Pb2+ Significantly inhibited dehydrogenase activities at all five concentrations studied and the lowest combined concentration was 1.25 mu mol/L Cd2+ and 5 mu mol/L Pb2+. A synergistic effect of Cd2+ and Pb2+ was observed. On the other hand, polysaccharide contents varied unpredictably with the increasing concentrations of Cd2+ and Pb2+ and extended experimental time. There were no significant statistical differences within the range of concentration and time studied, whether singly or in combination. These results implied that the effects of heavy metals on biofilms should be a concern for the operation and maintenance of constructed wetlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A L9 orthogonal array design involving 3 factors (C6H12O6, KNO3 and NaH2PO4) and 3 levels for each (C6H12O6: 0.2, 0.4 or 0.8 g/L; KNO3: 0.4, 0.8 or 1.6 g/L, NaH2PO4: 0.05, 0.1 or 0.2 g/L), was used to study the effects of nutrients on dehydrogenase activity and polysaccharide content of substrate biofilms in the integrated vertical-flow constructed wetland (IVCW). Results showed that C6H12O6 and KNO3 were the main factors for dehydrogenase activity and polysaccharide content of biofilms, respectively. The combinations of three nutrients at different concentrations had different effects on dehydrogenase activity and polysaccharide content of biofilms. The optimal combination for dehydrogenase activity was obtained by locating the concentrations Of C6H12O6, KNO3 and NaH2PO4 at 0.2, 0.8 and 0.05 g, and the optimal combination for polysaccharide content was obtained by locating the concentrations Of C6H12O6, KNO3 and NaH2PO4 at 0.2, 0.4 and 0.2 g/L, respectively. The corresponding maximum activity and polysaccharide content were 5.40 mu g TF/g substrate/12 h and 3454.6 mu g/g substrate, respectively. These results would provide the laboratory foundation for optimizing the purification function of the wetland systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vertical/reverse-vertical flow constructed wetland system was set up in Wuhan, China, to study its treatment efficiency of polluted lake water. The numbers of substrate microorganisms and urease activities in the substrate of the constructed wetland were determined by plate counts and colorimetric analysis, respectively. The removal efficiencies of biochemical oxygen demands (BOD5). chemical oxygen demands (COD), total phosphorus (TP), total Kjeldahl nitrogen (TKN), and total suspended solids (TSS) were measured by EPA approved methodology. The results showed there were significant positive correlations (P < 0.05) between numbers of microorganism in the substrate and removal rates of TKN and CODCr. Meanwhile, there was significant positive correlation (P < 0.05) between urease activities and removal efficiencies of TKN and negative correlation between urease activities and removal efficiencies of BOD5. Substrate microorganisms and urease activities played key factors during purification processes and they could be utilized as indicator of wastewater treatment performances in the constructed wetland system. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the growth of GaN epilayer on Si (111) substrate with a single AlGaN interlayer sandwiched between the GaN epilayer and AlN buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an AlN buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on normal incidence p-i-n heterojunction photodiodes operating in the near-infrared region and realized in pure germanium on planar silicon substrate. The diodes were fabricated by ultrahigh vacuum chemical vapor deposition at 600 degrees C without thermal annealing and allowing the integration with standard silicon processes. Due to the 0.14% residual tensile strain generated by the thermal expansion mismatch between Ge and Si, an efficiency enhancement of nearly 3-fold at 1.55 mu m and the absorption edge shifting to longer wavelength of about 40 nm are achieved in the epitaxial Ge films. The diode with a responsivity of 0.23 A/W at 1.55 mu m wavelength and a bulk dark current density of 10 mA/cm(2) is demonstrated. These diodes with high performances and full compatibility with the CMOS processes enable monolithically integrating microphotonics and microelectronics on the same chip.