985 resultados para hydrogen atom
Resumo:
Dichlorosilane, a gas at normal temperature with a boiling point of 8.3 degrees C, is very difficult to sample and detect using conventional methods. We reduced phosphorus in dichlorosilane to PH3 by hydrogen at high temperature, then PH3 was separated from chlorosilanes by NaOH solution and from other hydrides by chromatographic absorption. Thus the problem of interference of chlorosilanes and other hydrides was overcome and PH, was measured by a double flame photometric detector at 526 nm. This method was sensitive, reliable and convenient and the sensitivity reached as low as 0.04 mu g/l.
Resumo:
In AlGaAs/InGaAs/GaAs PM-HEMT structures, the characterization of deep centers, the degradation in electrical and optical properties and their effects on electrical performance of the PM-HEMTs have been investigated by DLTS, SIMS, PL and conventional van der Pauw techniques. The experimental results confirm that the deep level centers correlate strongly with the oxygen content in the AlGaAs layer, the PL response of PM-HEMTs, and the electrical performance of the PM-HEMTs. Hydrogen plasma treatment was used to passivate/annihilate these centers, and the effects of hydrogenation were examined.
Resumo:
Surface reconstructions on Si(113) induced by dissociated hydrogen adsorption have been studied using low energy electron diffraction (LEED). It has been found that: (1) at 300 K and 80 K temperatures, with the increase of hydrogen coverage on the surface, the (3 x 1) phase transferred continuously into a hydrogen saturated (1 x 1)-2H phase; (2) flashing of the (1 x 1)-2H surface at about 1100 degrees C resulted in a complete new phase of(1 x 3) and further annealing of the sample at 1250 degrees C gave back the starting surface of (3 x 1); (3) saturated hydrogen adsorption at a sample temperature of 700 degrees C resulted in a stable new phase of(1 x 2)-H and further saturation doses of hydrogen at other temperatures below 700 degrees C did not change the (1 x 2) LEED pattern; (4) annealing of the (I x 2)-H surface in the same manner as (2) gave similar results.
Resumo:
After illumination with 1-1.3 eV photons during cooling-down, metastable PH modes are observed by IR absorption at 5 K in semi-insulating InP:Fe. They correlate with the photo-injection of holes, but not with a change of the charge state of the K-related centres present at equilibrium. They are explained by a change of the bonding of H, induced by hole trapping, from IR-inactive centres to PH-containing centres, stable only below 80 K. One metastable centre has well-defined geometrical parameters and the other one could be located in a region near from the interface with (Fe,P) precipitates.
Resumo:
Step like morphology of (331)A high-index surfaces during atomic hydrogen assisted molecular beam epitaxy (MBE) growth has been investigated. Atomic Force Microscope (AFM) measurements show that in conventional MBE, the step heights and terrace widths of GaAs layers increase monotonically with increasing substrate temperatures. The terrace widths and step densities increase with increasing the GaAs layer thickness and then saturates. And, in atomic hydrogen assisted MBE, the terrace width reduces and density increases when depositing the same amount of GaAs. It attributes this to the reduced surface migration length of Ga adatoms with atomic hydrogen. Laterally ordered InAs self-aligned nano-wires were grown on GaAs (331)A surfaces and its optical polarization properties were revealed by photoluminescence measurements.
Resumo:
国家自然科学基金
Resumo:
A kind of hydrogenated diphasic silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) near the phase transition regime from amorphous to nanocrystalline. The microstructural properties of the films have been investigated by the micro-Raman and Fourier transformed Infrared (FT-IR) spectra and atom force microscopy (AFM). The obtained Raman spectra show not only the existence of nanoscaled crystallites, but also a notable improvement in the medium-range order of the diphasic films. For the FT-IR spectra of this kind of films, it notes that there is a blueshift in the Si-H stretching mode and a redshift in the Si-H wagging mode in respect to that of typical amorphous silicon film. We discussed the reasons responsible for these phenomena by means of the phase transition, which lead to the formation of a diatomic hydrogen complex, H-2* and their congeries.
Resumo:
Complexes of vacancy at indium site with one to four hydrogen atoms and isolated hydrogen or hydrogen dimer and other infrared absorption lines, tentatively be assigned to hydrogen related defects were investigated by FTIR. Hydrogen cam passivate imperfections, thereby eliminating detrimental electronic states from the energy bandgap. Incorporated hydrogen can introduce extended defects and generate electrically-active defects. Hydrogen also can acts as an actuator for creating of antistructure defects. Isolated hydrogen related defects(e.. H-2*) may play an important role in the conversion of the annealed wafers from semiconducting to the semi-insulating behavior. H-2* may be a deep donor, whose energy level is very near the iron deep acceptor level in the energy gap.
Resumo:
Isochronal thermal-annealing behavior of NTD floating-zone silicon grown in hydrogen ambient (called NTD FZ(H) Si) is presented. The dependencies of resistivity and carrier mobility on annealing temperature are determined by room-temperature Hall electrical measurements. Using infrared absorption spectroscopy, hydrogen-related infrared absorption bands evolution for NTD FZ(H) Si were measured in detail. It is demonstrated that compared with NTD FZ(Ar) Si, NTD FZ(H) Si exhibits the striking features upon isochronal annealing in temperature range of 150 similar to 650 degreesC: there appears the formation of an excessive shallow donor at annealing temperature of 500 degreesC. It is shown that the annealing behavior is directly related to the reaction of hydrogen and irradiation-induced defects. The evolution of infrared absorption bands upon temperature reflects a series of complex reaction process: irradiation-induced defects decomposition, breaking of Si-H bonds, migration and aggregation of atomic hydrogen, and formation of the secondary defects. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We use nuclear reaction analysis to study hydrogen in unintentionally doped GaN, and high-concentration hydrogen, nearly 10(21) cm(-3), is detected. Accordingly, a broad but intense infrared absorption zone with a peak at 2962 cm(-1) is reported, which is tentatively assigned to the stretch mode of NH: Ga complex. The complex is assumed to be one candidate answering for background electrons in unintentionally doped GaN. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The annealing of Mg-doped GaN with Pt and Mo layers has been found to effectively improve the hole concentration of such material by more than 2 times as high as those in the same material without metal. Compared with the Ni and Mo catalysts, Pt showed good activation effect for hydrogen desorption and ohmic contact to the Ni/Au electrode. Despite the weak hydrogen desorption, Mo did not diffuse into the GaNepilayer in the annealing process, thus suppressing the carrier compensation phenomenon with respect to Ni and Pt depositions, which resulted in the high activation of Mg acceptors. For the GaN activated with the Ni, Pt, and Mo layers, the blue emission became dominant, followed by a clear peak redshift and the degradation of photoluminescence signal when compared with that of GaN without metal.