34 resultados para hydrogen atom

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many senses, the hydrogen-atom transfer reactions observed with the triplet excited state of pyrophosphito-bridged platinum(II) dimers resemble the reactions of organic ketone nπ* states. The first two chapters describe our attempts to understand the reactivity differences between these two chromophores. Reactivity of the metal dimers is strongly regulated by the detailed nature of the ligands that ring the axial site, the hydrogen-abstraction center. A hydrogen-bonded network linking the ligands facilitates H-atom transfer quenching with alcohols through the formation of a hydrogen-bonded complex between the alcohol and a dimer. For substrates of equal C-H bond strength that lack a hydroxyl group (e.g., benzyl hydrocarbons), the quenching rate is several orders of magnitude slower.

The shape and size of the axial site, as determined by the ligands, also discriminate among quenchers by their steric characteristics. Very small quenchers quench slowly because of high entropies of activation, while very large ones have large enthalpic barriers. The two effects find a balance with quenchers of "just the right size."

The third chapter discusses the design of a mass spectrometer that uses positron annihilation to ionize neutral molecules. The mass spectrometer creates positron-molecule adducts whose annihilation produces fragmentation products that may yield information on the bonding of positrons in such complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation describes efforts to model biological active sites with small molecule clusters. The approach used took advantage of a multinucleating ligand to control the structure and nuclearity of the product complexes, allowing the study of many different homo- and heterometallic clusters. Chapter 2 describes the synthesis of the multinucleating hexapyridyl trialkoxy ligand used throughout this thesis and the synthesis of trinuclear first row transition metal complexes supported by this framework, with an emphasis on tricopper systems as models of biological multicopper oxidases. The magnetic susceptibility of these complexes were studied, and a linear relation was found between the Cu-O(alkoxide)-Cu angles and the antiferromagnetic coupling between copper centers. The triiron(II) and trizinc(II) complexes of the ligand were also isolated and structurally characterized.

Chapter 3 describes the synthesis of a series of heterometallic tetranuclear manganese dioxido complexes with various incorporated apical redox-inactive metal cations (M = Na+, Ca2+, Sr2+, Zn2+, Y3+). Chapter 4 presents the synthesis of heterometallic trimanganese(IV) tetraoxido complexes structurally related to the CaMn3 subsite of the oxygen-evolving complex (OEC) of Photosystem II. The reduction potentials of these complexes were studied, and it was found that each isostructural series displays a linear correlation between the reduction potentials and the Lewis acidities of the incorporated redox-inactive metals. The slopes of the plotted lines for both the dioxido and tetraoxido clusters are the same, suggesting a more general relationship between the electrochemical potentials of heterometallic manganese oxido clusters and their “spectator” cations. Additionally, these studies suggest that Ca2+ plays a role in modulating the redox potential of the OEC for water oxidation.

Chapter 5 presents studies of the effects of the redox-inactive metals on the reactivities of the heterometallic manganese complexes discussed in Chapters 3 and 4. Oxygen atom transfer from the clusters to phosphines is studied; although the reactivity is kinetically controlled in the tetraoxido clusters, the dioxido clusters with more Lewis acidic metal ions (Y3+ vs. Ca2+) appear to be more reactive. Investigations of hydrogen atom transfer and electron transfer rates are also discussed.

Appendix A describes the synthesis, and metallation reactions of a new dinucleating bis(N-heterocyclic carbene)ligand framework. Dicopper(I) and dicobalt(II) complexes of this ligand were prepared and structurally characterized. A dinickel(I) dichloride complex was synthesized, reduced, and found to activate carbon dioxide. Appendix B describes preliminary efforts to desymmetrize the manganese oxido clusters via functionalization of the basal multinucleating ligand used in the preceding sections of this dissertation. Finally, Appendix C presents some partially characterized side products and unexpected structures that were isolated throughout the course of these studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activation of Fe-coordinated N2 via the formal addition of hydrogen atom equivalents is explored in this thesis. These reactions may occur in nitrogenase enzymes during the biological conversion of N2 to NH3. To understand these reactions, the N2 reactivity of a series of molecular Fe(N2) platforms is investigated. A trigonal pyramidal, carbon-ligated FeI complex was prepared that displays a similar geometry to that of the resting state 'belt' Fe atoms of nitrogenase. Upon reduction, this species was shown to coordinate N2, concomitant with significant weakening of the C-Fe interaction. This hemilability of the axial ligand may play a critical role in mediating the interconversion of Fe(NxHy) species during N2 conversion to NH3. In fact, a trigonal pyramidal borane-ligated Fe complex was shown to catalyze this transformation, generating up to 8.49 equivalents of NH3. To shed light on the mechanistic details of this reaction, protonation of a borane-ligated Fe(N2) complex was investigated and found to give rise to a mixture of species that contains an iron hydrazido(2-) [Fe(NNH2)] complex. The identification of this species is suggestive of an early N-N bond cleavage event en route to NH3 production, but the highly-reactive nature of this complex frustrated direct attempts to probe this possibility. A structurally-analogous silyl-ligated Fe(N2) complex was found to react productively with hydrogen atom equivalents, giving rise to an isolable Fe(NNH2) species. Spectroscopic and crystallographic studies benefited from the enhanced stability of this complex relative to the borane analogue. One-electron reduction of this species initiates a spontaneous disproportionation reaction with an iron hydrazine [Fe(NH2NH2)] complex as the predominant reaction product. This transformation provides support for an Fe-mediated N2 activation mechanism that proceeds via a late N-N bond cleavage. In hopes of gaining more fundamental insight into these reactions, a series of Fe(CN) complexes were prepared and reacted with hydrogen-atom equivalents. Significant quantities of CH4 and NH3 are generated in these reactions as a result of complete C-N bond activation. A series of Fe(CNHx) were found to be exceptionally stable and may be intermediates in these reactions. The stability of these compounds permitted collection of thermodynamic parameters pertinent to the unique N-H bonds. This data is comparatively discussed with the theoretically-predicted data of the N2-derived Fe(NNHx) species. Exceptionally-weak N-H bond enthalpies are found for many of these compounds, and sheds light on their short-lived nature and tendency to evolve H2. As a whole, these works both establish and provide a means to understand Fe-mediated N2 activation via the addition of hydrogen atom equivalents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organometallic chemistry of the hexagonally close-packed Ru(001) surface has been studied using electron energy loss spectroscopy and thermal desorption mass spectrometry. The molecules that have been studied are acetylene, formamide and ammonia. The chemistry of acetylene and formamide has also been investigated in the presence of coadsorbed hydrogen and oxygen adatoms.

Acetylene is adsorbed molecularly on Ru(001) below approximately 230 K, with rehybridization of the molecule to nearly sp^3 occurring. The principal decomposition products at higher temperatures are ethylidyne (CCH_3) and acetylide (CCH) between 230 and 350 K, and methylidyne (CH) and surface carbon at higher temperatures. Some methylidyne is stable to approximately 700 K. The preadsorption of hydrogen does not alter the decomposition products of acetylene, but reduces the saturation coverage and also leads to the formation of a small amount of ethylene (via an η^2-CHCH_2 species) which desorbs molecularly near 175 K. Preadsorbed oxygen also reduces the saturation coverage of acetylene but has virtually no effect on the nature of the molecularly chemisorbed acetylene. It does, however, lead to the formation of an sp^2-hybridized vinylidene (CCH_2) species in the decomposition of acetylene, in addition to the decomposition products that are formed on the clean surface. There is no molecular desorption of chemisorbed acetylene from clean Ru(001), hydrogen-presaturated Ru(001), or oxygen-presaturated Ru(001).

The adsorption and decomposition of formamide has been studied on clean Ru(001), hydrogen-presaturated Ru(001), and Ru(001)-p(1x2)-O (oxygen adatom coverage = 0.5). On clean Ru(001), the adsorption of low coverages of formamide at 80 K results in CH bond cleavage and rehybridization of the carbonyl double bond to produce an η^2 (C,O)-NH_2CO species. This species is stable to approximately 250 K at which point it decomposes to yield a mixture of coadsorbed carbon monoxide, ammonia, an NH species and hydrogen adatoms. The decomposition of NH to hydrogen and nitrogen adatoms occurs between 350 and 400 K, and the thermal desorption products are NH_3 (-315 K), H_2 (-420 K), CO (-480 K) and N_2 (-770 K). At higher formamide coverages, some formamide is adsorbed molecularly at 80 K, leading both to molecular desorption and to the formation of a new surface intermediate between 300 and 375 K that is identified tentatively as η^1(N)-NCHO. On Ru(001)- p(1x2)-O and hydrogen-presaturated Ru(001), formamide adsorbs molecularly at 80 K in an η^1(O)- NH_2CHO configuration. On the oxygen-precovered surface, the molecularly adsorbed formamide undergoes competing desorption and decomposition, resulting in the formation of an η^2(N,O)-NHCHO species (analogous to a bidentate formate) at approximately 265 K. This species decomposes near 420 K with the evolution of CO and H_2 into the gas phase. On the hydrogen precovered surface, the Η^1(O)-NH_2CHO converts below 200 K to η^2(C,O)-NH_2CHO and η^2(C,O)-NH^2CO, with some molecular desorption occurring also at high coverage. The η^2(C,O)-bonded species decompose in a manner similar to the decomposition of η^2(C,O)-NH_2CO on the clean surface, although the formation of ammonia is not detected.

Ammonia adsorbs reversibly on Ru(001) at 80 K, with negligible dissociation occurring as the surface is annealed The EEL spectra of ammonia on Ru(001) are very similar to those of ammonia on other metal surfaces. Off-specular EEL spectra of chemisorbed ammonia allow the v(Ru-NH_3) and ρ(NH_3) vibrational loss features to be resolved near 340 and 625 cm^(-1), respectively. The intense δ_g (NH_3) loss feature shifts downward in frequency with increasing ammonia coverage, from approximately 1160 cm^(-1) in the low coverage limit to 1070 cm^(-1) at saturation. In coordination compounds of ammonia, the frequency of this mode shifts downward with decreasing charge on the metal atom, and its downshift on Ru(001) can be correlated with the large work function decrease that the surface has previously been shown to undergo when ammonia is adsorbed. The EELS data are consistent with ammonia adsorption in on-top sites. Second-layer and multilayer ammonia on Ru(001) have also been characterized vibrationally, and the results are similar to those obtained for other metal surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbes have profoundly influenced the Earth’s environments through time. Records of these interactions come primarily from the development and implementation of proxies that relate known modern processes to chemical signatures in the sedimentary record. This thesis is presented in two parts, focusing first on novel proxy development in the modern and second on interpretation of past environments using well-established methods. Part 1, presented in two chapters, builds on previous observations that different microbial metabolisms produce vastly different lipid hydrogen isotopic compositions. Chapter 1 evaluates the potential environmental expression of metabolism-based fractionation differences by exploiting the natural microbial community gradients in hydrothermal springs. We find a very large range in isotopic composition that can be demonstrably linked to the microbial source(s) of the fatty acids at each sample site. In Chapter 2, anaerobic culturing techniques are used to evaluate the hydrogen isotopic fractionations produced by anaerobic microbial metabolisms. Although the observed fractionation patterns are similar to those reported for aerobic cultures for some organisms, others show large differences. Part 2 changes focus from the modern to the ancient and uses classical stratigraphic methods combined with isotope stratigraphy to interpret microbial and environmental changes during the latest Precambrian Era. Chapter 3 presents a detailed characterization of the facies, parasequence development, and stratigraphic architecture of the Ediacaran Khufai Formation. Chapter 4 presents measurements of carbon, oxygen, and sulfur isotopic ratios in stratigraphic context. Large oscillations in the isotopic composition of sulfate constrain the size of the marine sulfate reservoir and suggest incorporation of an enriched isotopic source. Because this data was measured in stratigraphic context, we can assert with confidence that these isotopic shifts are not related to stratigraphic surfaces or facies type but instead reflect the evolution of the ocean through time. This data integrates into the chemostratigraphic global record and contributes to the emerging picture of changing marine chemistry during the latest Precambrian Era.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic biology promises to transform organic synthesis by enabling artificial catalysis in living cells. I start by reviewing the state of the art in this young field and recognizing that new approaches are required for designing enzymes that catalyze nonnatural reactions, in order to expand the scope of biocatalytic transformations. Carbene and nitrene transfers to C=C and C-H bonds are reactions of tremendous synthetic utility that lack biological counterparts. I show that various heme proteins, including cytochrome P450BM3, will catalyze promiscuous levels of olefin cyclopropanation when provided with the appropriate synthetic reagents (e.g., diazoesters and styrene). Only a few amino acid substitutions are required to install synthetically useful levels of stereoselective cyclopropanation activity in P450BM3. Understanding that the ferrous-heme is the active species for catalysis and that the artificial reagents are unable to induce a spin-shift-dependent increase in the redox potential of the ferric P450, I design a high-potential serine-heme ligated P450 (P411) that can efficiently catalyze cyclopropanation using NAD(P)H. Intact E. coli whole-cells expressing P411 are highly efficient asymmetric catalysts for olefin cyclopropanation. I also show that engineered P450s can catalyze intramolecular amination of benzylic C-H bonds from arylsulfonyl azides. Finally, I review other examples of where synthetic reagents have been used to drive the evolution of novel enzymatic activity in the environment and in the laboratory. I invoke preadaptation to explain these observations and propose that other man-invented reactions may also be transferrable to natural enzymes by using a mechanism-based approach for choosing the enzymes and the reagents. Overall, this work shows that existing enzymes can be readily adapted for catalysis of synthetically important reactions not previously observed in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical challenge for the 21st century is shifting from the predominant use of fossil fuels to renewables for energy. Among many options, sunlight is the only single renewable resource with sufficient abundance to replace most or all of our current fossil energy use. However, existing photovoltaic and solar thermal technologies cannot be scaled infinitely due to the temporal and geographic intermittency of sunlight. Therefore efficient and inexpensive methods for storage of solar energy in a dense medium are needed in order to greatly increase utilization of the sun as a primary resource. For this purpose we have proposed an artificial photosynthetic system consisting of semiconductors, electrocatalysts, and polymer membranes to carry out photoelectrochemical water splitting as a method for solar fuel generation.

This dissertation describes efforts over the last five years to develop critical semiconductor and catalyst components for efficient and scalable photoelectrochemical hydrogen evolution, one of the half reactions for water splitting. We identified and developed Ni–Mo alloy and Ni2P nanoparticles as promising earth-abundant electrocatalysts for hydrogen evolution. We thoroughly characterized Ni–Mo alloys alongside Ni and Pt catalysts deposited onto planar and structured Si light absorbers for solar hydrogen generation. We sought to address several key challenges that emerged in the use of non-noble catalysts for solar fuels generation, resulting in the synthesis and characterization of Ni–Mo nanopowder for use in a new photocathode device architecture. To address the mismatch in stability between non-noble metal alloys and Si absorbers, we also synthesized and characterized p-type WSe2 as a candidate light absorber alternative to Si that is stable under acidic and alkaline conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of variable-angle, electron energy-loss spectroscopy has been used to study the electronic spectroscopy of the diketene molecule. The experiment was performed using incident electron beam energies of 25 eV and 50 eV, and at scattering angles between 10° and 90°. The energy-loss region from 2 eV to 11 eV was examined. One spin-forbidden transition has been observed at 4.36 eV and three others that are spin-allowed have been located at 5.89 eV, 6.88 eV and 7.84 eV. Based on the intensity variation of these transitions with impact energy and scattering angle, and through analogy with simpler molecules, the first three transitions are tentatively assigned to an n → π* transition, a π - σ* (3s) Rydberg transition and a π → π* transition.

Thermal decomposition of chlorodifluoromethane, chloroform, dichloromethane and chloromethane under flash-vacuum pyrolysis conditions (900-1100°C) was investigated by the technique of electron energy-loss spectroscopy, using the impact energy of 50 eV and a scattering angle of 10°. The pyrolytic reaction follows a hydrogen-chloride α-elimination pathway. The difluoromethylene radical was produced from chlorodifluoromethane pyrolysis at 900°C and identified by its X^1 A_1 → A^1B_1 band at 5.04 eV.

Finally, a number of exploratory studies have been performed. The thermal decomposition of diketene was studied under flash vacuum pressures (1-10 mTorr) and temperatures ranging from 500°C to 1000°C. The complete decomposition of the diketene molecule into two ketene molecules was achieved at 900°C. The pyrolysis of trifluoromethyl iodide molecule at 1000°C produced an electron energy-loss spectrum with several iodine-atom, sharp peaks and only a small shoulder at 8.37 eV as a possible trifluoromethyl radical feature. The electron energy-loss spectrum of trichlorobromomethane at 900°C mainly showed features from bromine atom, chlorine molecule and tetrachloroethylene. Hexachloroacetone decomposed partially at 900°C, but showed well-defined features from chlorine, carbon monoxide and tetrachloroethylene molecules. Bromodichloromethane molecule was investigated at 1000°C and produced a congested, electron energy-loss spectrum with bromine-atom, hydrogen-bromide, hydrogen-chloride and tetrachloroethylene features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of Cp*Ti(CH_3)_2 (Cp*≡ ƞ^5-C_5Me_5) toluene solution follows cleanly first-order kinetics and produces a single titanium product Cp*(C_5Me_4CH_2)Ti(CH_3) concurrent with the evolution of one equivalent of methane. Labeling studies using Cp*_2Ti- (CD_3)_2 and (Cp*-d_(15))_2Ti(CH_3)_2 show the decomposition to be intramolecular and the methane to be produced by the coupling of a methyl group with a hydrogen from the other TiCH_3 group. Activation parameters, ΔH^‡ and ΔS^‡, and kinetic deuterium isotope effects have been measured. The alternative decomposition pathways of α-hydrogen abstraction and a-hydrogen elimination, both leading to a titanium-methylidene intermediate, are discussed.

The insertion of unactivated acetylenes into the metal-hydride bonds of Cp*_2MH_2 (M = Zr, Hf) proceeds rapidly at low temperature to form monoand/ or bisinsertion products, dependent upon the steric bulk of the acetylene substituents. Cp*_2M(H)(C(Me)=CHMe), Cp*_2M(H)(CH=CHCMe_3), Cp*_2M(H)-(CH=CHPh), Cp*_2M(CH=CHPh)_2, Cp*_2M(CH=CHCH_3)_2 and Cp*_2Zr- (CH=CHCH_2CH_3)_2 have been isolated and characterized. To extend the study of unsaturated-carbon ligands, Cp*_2M(C≡CCH_3)_2 have been prepared by treating Cp*_2MCl_2 with LiC≡CCH_3. The reactivity of many of these complexes with carbon monoxide and dihydrogen is surveyed. The mono(2- butenyl) complexes Cp*_2M(H)(C(Me)=CHMe) rearrange at room temperature, forming the crotyl-hydride species Cp*_2M(H)(ƞ^3-C_4H_7). The bis(propenyl) and bis(l-butenyl) zirconium complexes Cp*_2Zr(CH=CHR)_2 (R = CH_3, CH_2CH_3) also rearrange, forming zirconacyclopentenes. Labeling studies, reaction chemistry, and kinetic measurements, including deuterium isotope effects, demonstrate that the unusual 6-hydrogen elimination from an sp^2-hybridized carbon is the first step in these latter rearrangements but is not observed in the former. Details of these mechanisms and the differences in reactivity of the zirconium and hafnium complexes are discussed.

The reactions of hydride- and alkyl-carbonyl derivatives of permethylniobocene with equimolar amounts of trialkylaluminum reagents occur rapidly producing the carbonyl adducts Cp*_2Nb(R)(COAlR'_3) (R = H, CH_3, CH_2CH_3, CH_2CH_2Ph, C(Me)=CHMe; R' = Me, Et). The hydride adduct Cp*_2NbH_3•AlEt_3 has also been formed. In solution, each of these compounds exists in equilibrium with the uncomplexed species. The formation constants for Cp*_2Nb(H)(COA1R'_R) have been measured. They indicate the steric bulk of the Cp* ligands plays a deciding factor in the isolation of the first example of an aluminum Lewis acid bound to a carbonyl-oxygen in preference to a metalhydride. Reactions of Cp*_2Nb(H)CO with other Lewis acids and of the one:one adducts with H_2, CO and C_2H_4 are also discussed.

Cp*_2Nb(H)(C_2H_4) also reacts with equimolar amounts of trialkylaluminum reagents, forming a one:one complex that ^1H NMR spectroscopy indicates contains a Nb-CH_2CH_2-Al bridge. This adduct also exists in equilibrium with the uncomplexed species in solution. The formation constant for Cp*_2N+/b(H)(CH_2CH_2ĀlEt_3) has been measured. Reactions of Cp*_2Nb(H)(C_2H_4) with other Lewis acids and the reactions of Cp*_2N+b(H)- (CH_2CH_2ĀlEt_3) with CO and C_2H_4 are described, as are the reactions of Cp_*2Nb(H)(CH_2=CHR) (R = Me, Ph), Cp*_2Nb(H)(CH_3C≡CCH_3) and Cp*_2Ti-(C_2H_4) with AlEt_3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O18/O16, C13/C12, and D/H ratios have been determined for rocks and coexisting minerals from several granitic plutons and their contact metamorphic aureoles in northern Nevada, eastern California, central Colorado, and Texas, with emphasis on oxygen isotopes. A consistent order of O18/O16, C13/C12, and D/H enrichment in coexisting minerals, and a correlation between isotopic fractionations among coexisting mineral pairs are in general observed, suggesting that mineral assemblages tend to approach isotopic equilibrium during contact metamorphism. In certain cases, a correlation is observed between oxygen isotopic fractionations of a mineral pair and sample distance from intrusive contacts. Isotopic temperatures generally show good agreement with heat flow considerations. Based on the experimentally determined quartz-muscovite O18/O16 fractionation calibration curve, temperatures are estimated to be 525 to 625°C at the contacts of the granitic stocks studied.

Small-scale oxygen isotope exchange effects between intrusive and country rock are observed over distances of 0.5 to 3 feet on both sides of the contacts; the isotopic gradients are typically 2 to 3 per mil per foot. The degree of oxygen isotopic exchange is essentially identical for different coexisting minerals. This presumably occurred through a diffusion-controlled recrystallization process. The size of the oxygen isotope equilibrium systems in the small-scale exchanged zones vary from about 1.5 cm to 30 cm. A xenolith and a re-entrant of country rock projecting into on intrusive hove both undergone much more extensive isotopic exchange (to hundreds of feet); they also show abnormally high isotopic temperatures. The marginal portions of most plutons have unusually high O18/O16 ratios compared to "normal" igneous rocks, presumably due to large-scale isotopic exchange with meta-sedimentary country rocks when the igneous rocks were essentially in a molten state. The isotopic data suggest that outward horizontal movement of H2O into the contact metamorphic aureoles is almost negligible, but upward movement of H2O may be important. Also, direct influx and absorption of water from the country rock may be significant in certain intrusive stocks.

Except in the exchanged zones, the O18/O16 ratios of pelitic rocks do not change appreciably during contact metamorphism, even in the cordierite and sillimanite grades; this is in contrast to regional metamorphic rocks which commonly decrease in O18 with increasing grade. Low O18/O16 and C13/C12 ratios of the contact metamorphic marbles generally correlate well with the presence of calc-silicate minerals, indicating that the CO2 liberated during metamorphic decarbonation reactions is enriched in both O18 and C13 relative to the carbonates.

The D/H ratios of biotites in the contact metamorphic rocks and their associated intrusions show a geographic correlation that is similar to that shown by the D/H ratios of meteoric surface waters, perhaps indicating that meteoric waters were present in the rocks during crystallization of the biotites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed oxygen, hydrogen and carbon isotope studies have been carried out on igneous and metamorphic rocks of the Stony Mountain complex, Colorado, and the Isle of Skye, Scotland, in order to better understand the problems of hydrothermal meteoric water-rock interaction.

The Tertiary Stony Mountain stock (~1.3 km in diameter), is composed of an outer diorite, a main mass of biotite gabbro, and an inner diorite. The entire complex and most of the surrounding country rocks have experienced various degrees of 18O depletion (up to 10 per mil) due to interaction with heated meteoric waters. The inner diorite apparently formed from a low-18O magma with δ18O ≃ +2.5, but most of the isotopic effects are a result of exchange between H2O and solidified igneous rocks. The low-18O inner diorite magma was probably produced by massive assimilation and/or melting of hydrothermally altered country rocks. The δ18O values of the rocks generally increase with increasing grain size, except that quartz typically has δ18O = +6 to +8, and is more resistant to hydrothermal exchange than any other mineral studied. Based on atom % oxygen, the outer diorites, gabbros, and volcanic rocks exhibit integrated water/rock ratios of 0.3 ± 0.2, 0.15 ± 0.1, and 0.2 ± 0.1, respectively. Locally, water/rock ratios attain values greater than 1.0. Hydrogen isotopic analyses of sericites, chlorites, biotites, and amphiboles range from -117 to -150. δD in biotites varies inversely with Fe/Fe+Mg, as predicted by Suzuoki and Epstein (1974), and positively with elevation, over a range of 600 m. The calculated δD of the mid-to-late-Tertiary meteoric waters is about -100. Carbonate δ13C values average -5.5 (PDB), within the generally accepted range for deep-seated carbon.

Almost all the rocks within 4 km of the central Tertiary intrusive complex of Skye are depleted in 18O. Whole-rock δ18O values of basalts (-7. 1 to +8.4), Mesozoic shales (-0.6 to + 12.4), and Precambrian sandstones (-6.2 to + 10.8) systematically decrease inward towards the center of the complex. The Cuillin gabbro may have formed from a 18O-depleted magma (depleted by about 2 per mil); δ18O of plagioclase (-7.1 to + 2.5) and pyroxene (-0.5 to + 3.2) decrease outward toward the margins of the pluton. The Red Hills epigranite plutons have δ18O quartz (-2.7 to + 7.6) and feldspar (-6.7 to + 6.0) that suggest about 3/4 of the exchange took place at subsolidus temperatures; profound disequilibrium quartz-feldspar fractionations (up to 12) are characteristic. The early epigranites were intruded as low-18O melts (depletions of up to 3 per mil) with δ18O of the primary, igneous quartz decreasing progressively with time. The Southern Porphyritic Epigranite was apparently intruded as a low-18O magma with δ18O ≃ -2.6. A good correlation exists between grain size and δ18O for the unique, high-18O Beinn an Dubhaich granite which intrudes limestone having a δ18O range of +0.5 to +20.8, and δ13C of -4.9 to -1.0. The δD values of sericites (-104 to -107), and amphiboles, chlorites, and biotites (-105 to -128) from the igneous rocks , indicate that Eocene surface waters at Skye had δD ≃ -90. The average water/rock ratio for the Skye hydrothermal system is approximately one; at least 2000 km3 of heated meteoric waters were cycled through these rocks.

Thus these detailed isotopic studies of two widely separated areas indicate that (1) 18O-depleted magmas are commonly produced in volcanic terranes invaded by epizonal intrusions; (2) most of the 18O-depletion in such areas are a result of subsolidus exchange (particularly of feldspars); however correlation of δ18O with grain size is generally preserved only for systems that have undergone relatively minor meteoric hydrothermal exchange; (3) feldspar and calcite are the minerals mos t susceptible to oxygen isotopic exchange, whereas quartz is very resistant to oxygen isotope exchange; biotite, magnetite, and pyroxene have intermediate susceptibilities; and (4) basaltic country rocks are much more permeable to the hydrothermal convective system than shale, sandstone, or the crystalline basement complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A summary of previous research is presented that indicates that the purpose of a blue copper protein's fold and hydrogen bond network, aka, the rack effect, enforce a copper(II) geometry around the copper(I) ion in the metal site. In several blue copper proteins, the C-terminal histidine ligand becomes protonated and detaches from the copper in the reduced forms. Mutants of amicyanin from Paracoccus denitrificans were made to alter the hydrogen bond network and quantify the rack effect by pKa shifts.

The pKa's of mutant amicyanins have been measured by pH-dependent electrochemistry. P94F and P94A mutations loosen the Northern loop, allowing the reduced copper to adopt a relaxed conformation: the ability to relax drives the reduction potentials up. The measured potentials are 265 (wild type), 380 (P94A), and 415 (P94F) mV vs. NHE. The measured pKa's are 7.0 (wild type), 6.3 (P94A), and 5.0 (P94F). The additional hydrogen bond to the thiolate in the mutants is indicated by a red-shift in the blue copper absorption and an increase in the parallel hyperfine splitting in the EPR spectrum. This hydrogen bond is invoked as the cause for the increased stability of the C-terminal imidazole.

Melting curves give a measure of the thermal stability of the protein. A thermodynamic intermediate with pH-dependent reversibility is revealed. Comparisons with the electrochemistry and apoamicyanin suggest that the intermediate involves the region of the protein near the metal site. This region is destabilized in the P94F mutant; coupled with the evidence that the imidazole is stabilized under the same conditions confirms an original concept of the rack effect: a high energy configuration is stabilized at a cost to the rest of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isotope effect on propagation rate was determined for four homogeneous ethylene polymerization systems. The catalytic system Cp_2Ti(Et)Cl + EtA1Cl_2 has a k^H_p/k^D_p = 1.035 ± 0.03. This result strongly supports an insertion mechanism which does not involve a hydrogen migration during the rate determining step of propagation (Cossee mechanism). Three metal-alkyl free systems were also studied. The catalyst I_2 (PMe_3)_3Ta(neopentylidene)(H) has a k^H_p/k^D_p = 1.709. It is interpreted as a primary isotope effect involving a non-linear a-hydrogen migration during the rate determining step of propagation (Green mechanism). The lanthanide complexes Cp*_2LuMe•Et_2O and Cp*_2YbMe•Et_2O have a k^H_p/k^D_p = 1.46 and 1.25, respectively. They are interpreted as primary isotope effects due to a partial hydrogen migration during the rate determining step of propagation.

The presence of a precoordination or other intermediate species during the polymerization of ethylene by the mentioned metal-alkyl free catalysts was sought by low temperature NMR spectroscopy. However, no evidence for such species was found. If they exist, their concentrations are very small or their lifetimes are shorter than the NMR time scale.

Two titanocene (alkenyl)chlorides (hexenyl 1 and heptenyl 2 were prepared from titanocene dichloride and a THF solution of the corresponding alkenylmagnesium chloride. They do not cyclize in solution when alone, but cyclization to their respective titanocene(methyl(cycloalkyl) chlorides occurs readily in the presence of a Lewis acid. It is demonstrated that such cyclization occurs with the alkenyl ligand within the coordination sphere of the titanium atom. Cyclization of 1 with EtAlCl_2 at 0°C occurs in less than 95 msec (ethylene insertion time), as shown by the presence of 97% cyclopentyl-capped oligomers when polymerizing ethylene with this system. Some alkyl exchange occurs (3%). Cyclization of 2 is slower under the same reaction conditions and is not complete in 95 msec as shown by the presence of both cyclohexyl-capped oligomers (35%) and odd number α-olefin oligomers (50%). Alkyl exchange is more extensive as evidenced by the even number n-alkanes (15%).

Cyclization of 2-d_1 (titanocene(hept-6-en-1-yl-1-d_1)chloride) with EtA1Cl_2 demonstrated that for this system there is no α-hydrogen participation during said process. The cyclization is believed to occur by a Cossee-type mechanism. There was no evidence for precoordination of the alkenyl double bond during the cyclization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical and electrocatalytic behavior of a series of heteropolytungstate anions in which a tungsten atom in the well known Keggin structure has been replaced by an iron atom is described. All of the iron substituted ions exhibit a one electron reversible couple associated with the Fe3+ center and a pair of two electron waves attributed to electron addition and removal from the tungsten oxo framework. The pH and ionic strength effects upon the various electrochemical processes are discussed and interpreted in terms of a competition between protonation and ion pairing of the highly negatively charged ions.

The anions are efficient catalysts for the electroreduction of hydrogen peroxide. A catalytic mechanism involving a formally Fe(IV) intermediate is proposed. Pulse radiolysis experiments were employed to detect the intermediate and evaluate the rate constants for the reactions in which it is formed and decomposed. A chain mechanism for the catalytic decomposition of hydrogen peroxide in which the Fe center shuttles between the +2, +3, and +4 oxidation states is proposed to explain the non-integral stoichiometry observed for the iron substituted polytungstate catalyzed electroreduction of hydrogen peroxide.

The anions are also efficient electrocatalyst for the electrochemical conversion of nitric oxide to ammonia. The catalyzed reduction does not produce hydroxylamine as an intermediate and appears to depend upon the ability of the multiply reduced heteropolytungstates to deliver several electrons to the bound NO group in a concerted step. A valuable feature of the heteropolytungstates is the ease at which the formal potentials of the several redox couples they exhibit may be shifted by changing the identity of the central heteroatom. Exploitation of this feature provided diagnostic information that was decisive in establishing the mechanism of electrocatalytic reduction.

The iron substituted heteropolytungstates are not degraded by repeated cycling between their oxidized and reduced states. They also show superior activity compared to their unsubstituted analogues, indicating that the Fe center acts as a binding site that facilitates inner-sphere electron transfer processes. The basic electrochemistry of several other transition metal substituted Keggin ions is also described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.

Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.

Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.

Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.

Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.

Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.

Chapter Six contains the experimental documentation of the thesis work.