996 resultados para MATRIX LIGAMENT THICKNESS
Resumo:
By using a transfer-matrix method on the basis of two-dimensional (2D) Bloch sums in accordance with a tight-binding scheme, a self-consistent calculation on the resonant tunneling in asymmetric double-barrier structures is presented, in which contributions to resonant tunneling from both three-dimensional (3D) electrons in the contacts and 2D electrons in the spacer or accumulation layers are considered simultaneously. The charge buildup effect on the current versus voltage (I-V) curves is evaluated systematically, showing quantitatively how it results in the I-V bistability and enhanced differences between I-V curves for positive and negative bias in an asymmetric double-barrier structure. Special attention is focused on the interaction between 3D-2D and 2D-2D resonant-tunneling processes, including the suppression of 2D-2D resonant tunneling by the charge buildup in the well accompanying the 3D-2D resonant tunneling. The effects of the emitter doping condition (doping concentration, spacer thickness) on the presence of two types of quasi-2D levels in the emitter accumulation layers, and on the formation of a potential bulge in the emitter region, are discussed in detail in relation to the tunneling process.
Resumo:
A matrix formulation has been developed and applied to simulate large-angle convergent-beam electron diffraction (LACBED) patterns from the Si/GexSi1-x strained layer superlattice (SLS). Good quantitative agreement has been achieved between experimental and simulated patterns. By utilizing dynamical HOLZ line patterns, we demonstrate that an accuracy of better than 0.1% can be achieved in the determination of the averaged lattice constant of a SLS, and the averaged number of layers of atoms within one period of SLS can be determined up to a single monolayer.
Resumo:
The dependence of the inversion-layer thickness on the film thickness in thin-film SOI structure is analyzed theoretically by using computer simulation. A new concept and parameter, the critical thickness of thin film all-bulk inversion, is introduced for the design of thin-film MOS/SOI devices. It is necessary to select the film thickness T(s1) close to the all-bulk strong inversion critical thickness in order to get high-speed and high-power operation of ultra-thin film MOS/SOI devices.
Resumo:
A scattering matrix method for investigating the electron transport in quantum waveguides is presented. By dividing the structure into a number of transverse slices, the global scattering matrix is obtained by the composition of the individual scattering matrices associated with each interface. Complicated geometries and inhomogeneous external potentials are included in the formulation. It is shown that the proposed scattering matrix method possesses many advantages over the traditional mode-matching and transfer matrix methods, especially in treating the electron wave propagation in complicated geometries. Justification for the method is provided by the unitarity of the calculated scattering matrix, and the consistency of the results with those obtained by the recursive Green's function method.
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.
Resumo:
A transfer matrix approach is presented for the study of electron conduction in an arbitrarily shaped cavity structure embedded in a quantum wire. Using the boundary conditions for wave functions, the transfer matrix at an interface with a discontinuous potential boundary is obtained for the first time. The total transfer matrix is calculated by multiplication of the transfer matrix for each segment of the structure as well as numerical integration of coupled second-order differential equations. The proposed method is applied to the evaluation of the conductance and the electron probability density in several typical cavity structures. The effect of the geometrical features on the electron transmission is discussed in detail. In the numerical calculations, the method is found to be more efficient than most of the other methods in the literature and the results are found to be in excellent agreement with those obtained by the recursive Green's function method.
Resumo:
We report a detailed analysis of optical properties of single submonolayer InAs structures grown on GaAs (001) matrix. It is shown that the formation of InAs dots with 1 monolayer (ML) height leads to localization of exciton under certain submonolayer InAs coverage, which play a key role in the highly improved luminescence efficiency of the submonolayer InAs/GaAs structures.
Resumo:
Optical properties of single submonolayer InAs structures grown on GaAs (001) matrix are systematically investigated by means of photoluminescence acid time-resolved photoluminescence, It is shown that the formation of InAs dots with 1 ML height leads to localization of excitons under certain submonolayer InAs coverages, which play a key role in the highly improved luminescence efficiency of the submonolayer InAs/GaAs structures. (C) 1995 American Institute of Physics.
Resumo:
High quality ZnO films are successfully grown on Si(100) substrates by metal-organic chemical vapor deposition at 300℃. The effects of the thickness of the ZnO films on crystal structure, surface morphology,and optical properties are investigated using X-ray diffraction, scanning probe microscopy,and photoluminescence spectra, respectively. It is shown that the ZnO films grown on Si substrates have a highly-preferential C-axis orientation,but it is difficult to obtain the better structural and optical properties of the ZnO films with the increasing of thickness. It is maybe due to that the grain size and the growth model are changed in the growth process.
Resumo:
The influence of the heaters on the reliability of the thermo-optic (TO) switch matrix is analyzed and an improved driving circuit based on the analyzed results is designed and fabricated. The circuit can improve the reliability of the switch matrix device from 78.87% to 97.04% for a 4×4 optical switch device with a simplified tree structure. The simulation and experimental results show the circuit can provide suitable driving current for TO switch matrix.
Resumo:
A rearrangeable nonblocking thermo-optic 4×4 switching matrix,which consists of five 2×2 multimode interference-based Mach-Zehnder interferometer(MMI-MZI) switch elements,is designed and fabricated.The minimum and maximum excess loss for the matrix are 6.6 and 10.4dB,respectively.The crosstalk in the matrix is measured to be between -12 and -19.8dB.The switching speed of the matrix is less than 30μs.The power consumption for the single switch element is about 330mW.
Resumo:
In this study, silicon nanocrystals embedded in SiO2 matrix were formed by conventional plasma enhanced chemical vapor deposition (PECVD) followed by high temperature annealing. The formation of silicon nanocrystals (nc-Si), their optical and micro-structural properties were studied using various experimental techniques, including Fourier transform infrared spectroscopy, micro-Raman spectra, high resolution transmission electron microscopy and x-ray photoelectron spectroscopy. Very strong red light emission from silicon nanocrystals at room temperature (RT) was observed. It was found that there is a strong correlation between the PL intensity and the substrate temperature, the oxygen content and the annealing temperature. When the substrate temperature decreases from 250degreesC to RT, the PL intensity increases by two orders of magnitude.
Resumo:
Structural dependence on annealing of a-SiOx:H was studied by using infrared absorption and Raman scattering. The appearance of Raman peaks in the range of 513-519cm(-1) after 1170 degreesC annealing was interpreted as the formation nanocrystalline silicon with the sizes from 3-10nm. The Raman spectra also show the existence of amorphous-like silicon phase, which is associated with Si-Si bond re-construction at boundaries of silicon nanocrystallites. The presence of the shoulder at 980cm(-1) of Si-O-Si stretching vibration at 1085cm(-1) in infrared spectra imply that except that SiO2 phase, there is silicon sub-oxide phase in the films annealed at 1170 degreesC. This sub-oxide phase is located at the interface between Si crystallites and SiO2, and thus support the shell model for the mixed structures of Si grains and SiO2 matrix.
Resumo:
A novel silicon-on-reflector substrate for Si-based resonant-cavity-enhanced photodetectors has been fabricated by using Si-based sol-gel and smart-cut techniques. The Si/SiO2 Bragg reflector is controlled in situ by electron beam evaporation and the thickness can be adjusted to get high reflectivity. The reflectance spectra of the silicon-on-reflector substrate with five pairs of Si/SiO2 reflector have been measured and simulated by transfer matrix model. The reflectivity at operating wavelength is close to 100%. Based on the silicon-on-reflector substrate, SiGe/Si multiple quantum wells resonant-cavity-enhanced photodetectors for 1.3 mu m wavelength have been designed and simulated. Ten-fold enhancement of the quantum efficiency of resonant-cavity-enhanced photodetectors compared with conventional photodetectors is predicted.
Resumo:
Quantum dot (QD) lasers are expected to have superior properties over conventional quantum well lasers due to a delta-function like density of states resulting from three dimensional quantum confinements. QD lasers can only be realized till significant improvements in uniformity of QDs with free of defects and increasing QD density as well in recent years. In this paper, we first briefly give a review on the techniques for preparing QDs, and emphasis on strain induced self-organized quantum dot growth. Secondly, self-organized In(Ga)As/GaAs, InAlAs/GaAlAs and InAs/InAlAs Qds grown on both GaAs and InP substrates with different orientations by using MBE and the Stranski-Krastanow (SK) growth mode at our labs are presented. Under optimizing the growth conditions such as growth temperature, V/III ratio, the amount of InAs, InxGa1-xAs, InxAl1-xAs coverage, the composition x etc., controlling the thickness of the strained layers, for example, just slightly larger than the critical thickness and choosing the substrate orientation or patterned substrates as well, the sheet density of ODs can reach as high as 10(11) cm(-2), and the dot size distribution is controlled to be less than 10% (see Fig. 1). Those are very important to obtain the lower threshold current density (J(th)) of the QD Laser. How to improve the dot lateral ordering and the dot vertical alignment for realizing lasing from the ground states of the QDs and further reducing the Jth Of the QD lasers are also described in detail. Thirdly based on the optimization of the band engineering design for QD laser and the structure geometry and growth conditions of QDs, a 1W continuous-wave (cw) laser operation of a single composite sheet or vertically coupled In(Ga)As quantum dots in a GaAs matrix (see Fig. 2) and a larger than 10W semiconductor laser module consisted nineteen QD laser diodes are demonstrated. The lifetime of the QD laser with an emitting wavelength around 960nm and 0.613W cw operation at room temperature is over than 3000 hrs, at this point the output power was only reduced to 0.83db. This is the best result as we know at moment. Finally the future trends and perspectives of the QD laser are also discussed.