999 resultados para TEMPERATURE-GROWN GAAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sb-doped and undoped ZnO thin films were deposited on Si (100) substrates by radio frequency (RF) magnetron sputtering. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that all the films had polycrystalline wurtzite structure and c-axis preferred orientation. Room temperature Hall measurements showed that the as-grown films were n-type and conducting (rho similar to 1-10 Omega cm). Annealing in a nitrogen ambient at 400 degrees C for 1 h made both samples highly resistive (rho > 10(3) Omega cm). Increasing the annealing temperature up to 800 C, the resistivity of the ttndoped ZnO film decreased gradually, but it increased for the Sb-doped ZnO film. In the end, the Sb-doped ZnO film annealed at 800 C became semi-insulating with a resistivity of 10(4)Omega cm. In addition, the effects of annealing treatment and Sb-doping on the structural and electrical properties are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have observed an unusual temperature sensitivity of the photoluminescence (PL) peak energy for InAs quantum dots grown on InAs quantum wires (QDOWs) on InP substrate. The net temperature shift of PL wavelength of the QDOWs ranges from 0.8 to -4. angstrom/degrees C depending upon the Si doping concentration in the samples. This unusual temperature behavior can be mainly ascribed to the stress amplification in the QDOWs when the thermal strain is transferred from the surrounding InAs wires. This offers an opportunity for realizing quantum dot laser devices with a temperature insensitive lasing wavelength. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphology evolution of high-index GaAs(331)A surfaces during molecular beam epitaxy (MBE) growth has been investigated in order to achieve regularly distributed step-array templates and fabricate spatially ordered low-dimensional nano-structures. Atomic force microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature. By using the step arrays formed on GaAs(331)A surfaces as the templates, we have fabricated highly ordered InGaAs nanowires. The improved homogeneity and the increased density of the InGaAs nanowires are attributed to the modulated strain field caused by vertical multi-stacking, as well as the effect of corrugated surface of the template. Photoluminescence (PL) tests confirmed remarkable polarization anisotropy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have demonstrated passive mode-locking in a diode-end-pumped Nd:YVO4 laser using two kinds of semiconductor absorbers whose relaxation region comes from In0.25Ga0.75As grown at low temperature (LT) and GaAs/air interface respectively Mode-locking, using absorbers of the GaAs/air interface relaxation region, has the characteristics of less Q-switching tendency and higher average output power than that using absorbers of LT In0.25Ga0.75As relaxation region, but is not as stable as the latter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A1GaAs/1nGaAs high electron mobility transistors (HEMTs) and AlAs/GaAs resonant tunnelling diodes (RTDs) are integrated on GaAs substrates. Molecular beam epitaxy is used to grow the RTD on the HEMT structure. The current-voltage characteristics of the RTD and HEMT are obtained on a two-inch wafer. At room temperature, the peak-valley, current ratio and the peak voltage are about 4.8 and 0.44 V, respectivcly The HEMT is characterized by a, gate length of 1 mu m, a, maximum transconductance of 125 mS/mm, and a threshold voltage of -1.0 V. The current-voltage, characteristics of the series-connected RTDs are presented. Tire current-voltage curves of the parallel connection of one RTD and one HEMT are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zincblende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on relaxed and strained (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. The structural characterizations of CrSb layers fabricated under the two cases are studied by using synchrotron grazing incidence x-ray diffraction (GID). The results of GID experiments indicate that no sign of second phase exists in all the zb-CrSb layers. Superconducting quantum interference device measurements demonstrate that the thickness of zb-CrSb layers grown on both relaxed and strained (In,Ga)As buffer layers can be increased to similar to 12 monolayers (similar to 3.6nm), compared to similar to 3 monolayers (similar to 1nm) on GaAs directly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By combination of prepatterned substrate and self-organized growth, InAs islands are grown on the stripe-patterned GaAs (100) substrate by solid soul-cc molecular beam epitaxy. Four [011] stripe-patterned substrates different in pitch, depth, and sidewall angle, respectively, are used in this work. The surface morphology obtained by atomic force microscopy shows that the InAs quantum dots can be formed either on the ridge or on the sidewall of the stripes near the bottom, depending on the structure of the stripes on the patterned substrate. The mechanism determining the nucleation position of the InAs dots is discussed. The optical properties of the InAs dots on the patterned substrates are also investigated by photo luminescence. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have grown MnxGe1-x films (x=0, 0.06, 0.1) on Si (001) substrates by magnetron cosputtering, and have explored the resulting structural, morphological, electrical and magnetic properties. X-ray diffraction results show there is no secondary phase except Ge in the Mn0.06Ge0.94 film while new phase appears in the Mn0.1Ge0.9 film. Nanocrystals are formed in the Mn0.06Ge0.94 film, determined by field-emission scanning electron microscopy. Hall measurement indicates that the Mn0.06Ge0.94 film is p-type semiconductor and hole carrier concentration is 6.07 X 10(19) cm(-3) while the MnxGe1-x films with x=0 has n-type carriers. The field dependence of magnetization was measured using alternating gradient magnetometer, and it has been indicated that the Mn0.06Ge0.94 film is ferromagnetic at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Broadband superluminescent diodes are fabricated by using InAs/GaAs self-assembled quantum dots as an active region. The devices exhibited properties of 110 run bandwidth with the centre of 1.1 mu m and above 30 mW output under pulse injection at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-continuous-wave operation of GaAs/AlGaAs quantum-cascade lasers with high average optical power is demonstrated. Double X-ray diffraction has been used to investigate the quality of the epitaxial material. The compositional gradients and the interface quality are controlled effectively. The corrected average power of per facet about 17 mW and temperature tuning coefficient of the gain peak about 0.91 nm/K from 83 K to 140 K is achieved in pulse operation. Best value of threshold current density is less than 3.0 kA/cm(2) at 83 K. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of highly lattice-mismatched InAs0.3Sb0.7 films on (100) GaAs Substrates by magnetron Sputtering has been investigated and even epitaxial lnAs(0.3)Sb(0.7) films have been successfully obtained. A strong effect of the growth conditions on the film structure was observed, revealing that there was a growth mechanism transition from three-dimensional nucleation growth to epitaxial layer-by-layer growth mode when increasing the substrate temperature. A qualitative explanation for that transition was proposed and the critical conditions for the epitaxial layer-by-layer growth mode were also discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of low temperature photoluminescence and synchrotron radiation X-ray diffraction, existence of stacking faults has been determined in epitaxy lateral overgrowth GaN by metalorganic chemical vapor deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon nanoparticles have been fabricated in both oxide and nitride matrices by using plasma-enhanced chemical vapour deposition, for which a low substrate temperature down to 50 degreesC turns out to be most favourable. High-rate deposition onto such a cold substrate results in the formation of nanoscaled silicon particles, which have revealed an amorphous nature under transmission electron microscope (TEM) examination. The particle size can be readily controlled below 3.0 nm, and the number density amounts to over 10(12) cm(-2), as calculated from the TEM micrographs. Strong photoluminescence in the whole visible light range has been observed in the as-deposited Si-in-SiOx and Si-in-SiNx thin films. Without altering the size or structure of the particles, a post-annealing at 300 degreesC for 2 min raised the photoluminescence efficiency to a level comparable to the achievements with nanocrystalline Si-in-SiO2 samples prepared at high temperature. This low-temperature procedure for fabricating light-emitting silicon structures opens up the possibility of manufacturing integrated silicon-based optoelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-indium-content self-assembled InGaAs/GaAs quantum dots (SAQD) were grown using solid-source molecular beam epitaxy (MBE) and investigated by atomic force microscopy and photoluminescence (PL) spectroscopy. Silicon, which was doped at different quantum dot (QD) growth stages, markedly increased the density of QD. We obtained high density In0.35Ga0.65As/GaAs(001) quantum dots of 10(11)/cm(2) at a growth temperature of 520degreesC. PL spectra and distribution statistics show the high quality and uniformity of our silicon-doped samples. The density increment can be explained using the lattice-hardening mechanism due to silicon doping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the experimental results of a mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror (SESAM) from which we achieved a 10 ps pulse duration at 150 MHz repetition rate. The SESAM was grown by metal organic chemical vapour deposition at low temperature. The recovery time was measured to be 0.5 ps, indicating the potential pulse compression to sub-picoseconds.