999 resultados para Factorização (Matemática)
Resumo:
Monográfico con el título: 'Web 2.0 : dispositivos móviles y abiertos para el aprendizaje'. Resumen basado en el de la publicación
Resumo:
El dominio sobre matemática que se estudia en el proyecto PISA 2003 se conoce como alfabetización matemática o competencia matemática. Este dominio se refiere a las capacidades de los estudiantes para analizar, razonar y comunicar eficazmente cuando resuelven o enuncian problemas matemáticas en una variedad de situaciones y dominios. El foco de evaluación PISA 2003 se centra pues en cómo los estudiantes pueden utilizar lo que han aprendido en situaciones usuales de la vida cotidiana y no sólo en conocer cuáles son los contenidos del currículo que han aprendido. Se consideran cuatro significados distintos sobre la noción de competencia en el informe PISA: la competencia como dominio de estudio, como conjunto de procesos generales, como tres niveles de complejidad y como nivel alcanzado por los alumnos.
Resumo:
Resumen basado en el del autor
Resumo:
Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Educación matemática y tecnologías de la información'. Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Educación matemática y tecnologías de la información'. Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Educación matemática y tecnologías de la información'. Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Educación matemática y tecnologías de la información'. Resumen basado en el de la publicación
Resumo:
La Comisión Internacional para el estudio y mejora de la enseñanza matemática nace de la inquietud de matemáticos, pedagogos, psicólogos y epistemólogos, interesados en estudiar y remediar el fallo que en la educación de todos los países presentaba la enseñanza de las matemáticas, especialmente en los niveles primario y secundario. Estos expertos estimaban que la coordinación de esfuerzos comunes en un plano internacional podría realizar el anhelo de una reforma profunda y eficaz en los programas, métodos y modos de enseñar nuestra ciencia en el mundo.
Resumo:
Contiene: memoria descriptiva y resumen. Premios Nacionales de Innovación Educativa CIDE 2001
Resumo:
Se trata de evaluar el currículum de matemáticas en su totalidad con pruebas criteriales que relacionen directamente la producción de los niños en periodo de Educación Infantil, con un nivel de exigencia previamente establecido. Para ello se elabora y valida una prueba de evaluación criterial para los contenidos matemáticos del segundo ciclo de Educación Infantil. Se elabora y comprueba la eficacia de un programa de intervención para consolidar los contenidos de matemáticas del segundo ciclo de EI mediante una metodología multicomponencial y se analiza la eficacia del programa para la prevención de las dificultades en el aprendizaje de las matemáticas en primaria. La muestra del estudio está formada por 100 niños y niñas de edades comprendidas entre 4 y 5 años en la evaluación inicial y entre 5 y 6 años en la evaluación final, residentes en las ciudades de Valencia, Xátiva, Llosa de Ranes y Vallada. Los instrumentos aplicados en la investigación son, una prueba de evaluación criterial y una Batería de Aptitudes Diferenciales y Generales (BADyG) que permite medir una serie de factores intelectuales, diferenciar dos factores de grupo y un superfactor de inteligencia general. La BADyG está dividida en seis subtest: conceptos cuantitativos-numéricos, información, vocabulario gráfico, habilidad mental no verbal, razonamiento con figuras y rompecabezas. El proceso se inicia con la elaboración de la prueba criterial; para ello se comienza concretando los contenidos mínimos del Diseño Curricular Base del segundo ciclo de EI, recogiendo documentación, revisando proyectos curriculares de distintos colegios y confeccionando un borrador, análisis y debate grupal de profesionales y secuenciación de contenidos de EI. A continuación se precede al análisis de los ítems, la determinación de estándares y puntos de corte, la comprobación de la fiabilidad y la validación del instrumento desarrollado. Tras ello, se procede a la elaboración de un programa multicomponencial, previa recogida de información sobre la práctica matemática y las metodologías utilizadas, para que el niño adquiera conceptos y destrezas básicas. Se aplican condiciones distintas a grupos de niños distintos. Queda comprobada la eficacia de la prueba para evaluar la competencia matemática cubriéndose además una laguna por la carencia de pruebas matemáticas en el ámbito de EI. Se logra elaborar un programa multicomponencial que obtiene mejores resultados comparados con otras metodologías, aun siendo una investigación natural. Por último, los resultados de la escala de Cadieux y Boudrealt muestran que los sujetos que participaron en una de las condiciones propuestas (Arco Iris) estaban mejor preparados para afrontar con éxito la educación primaria.
Resumo:
Comprobar si los conceptos relativos a la Teoría de conjuntos, figuras geométricas y ángulos se adquieren realmente o son sólo generalizaciones que conservan aspectos perceptuales. Observar si los niños son capaces de aplicar estas nociones a la realidad. El trabajo asume que la mejora de la enseñanza de las Matemáticas supone un conocimiento de cómo se construyen las nociones en relación con las situaciones en que se presentan. Propone nuevas modificaciones y criterios didácticos para la enseñanza de las Matemáticas. Nociones de la Teoría de conjuntos: 60 ss. entre 5 y 12 años pertenecientes a colegio publico (clase media) y otro privado (clase media-alta y media). Se seleccionaron 5 sujetos por cada nivel de edad. Comprensión de figuras geométricas: 40 ss. de primero a octavo de EGB (cinco por curso) pertenecientes a un colegio nacional de Madrid. Comprensión del concepto de ángulo: 30 ss. de tercero a octavo de EGB (5 sujetos por curso) pertenecientes a un colegio nacional de las afueras de Madrid. Aplicación de nociones matemáticas a problema de engranajes: 42 ss. entre 7 y 12 años de los cursos segundo y sexto de EGB (7 sujetos por nivel de edad) pertenecientes a un colegio nacional de Madrid. Cuatro diseños que evalúan comprensión de nociones en ámbitos diferentes. Siguiendo el método clínico en las que se evalúan dificultades de comprensión, aplicación a situaciones reales, ejemplos y utilidad percibida de diferentes conceptos (estos aspectos funcionan como variable dependiente). La variable independiente es la edad o el curso, según casos. Entrevistas individuales, fueron grabadas en audio y codificadas simultáneamente por dos observadores. Los datos fueron distribuidos en niveles según el grado de comprensión que denotaban los protocolos. Diseños: I, Teoria de conjuntos: 5-sujetos-x6-niveles de edad- x2-centros-. Intrasujeto. II, figuras geométricas: 5-sujetos-x8-cursos-. Intrasujeto. III, ángulos: 5-sujetos-x6-cursos-. Intrasujeto. IV, engranajes: 7-sujetos-x6-cursos-. Intrasujeto. Nociones sobre conjuntos: no se asimilan hasta cuarto de EGB, y a partir de aquí sólo de forma parcial. Frecuente que el niño confunda la noción de conjunto con su representación gráfica. Tampoco existe relación con las restantes nociones de Matemáticas. Figuras geométricas: se identifican como tales sólo en determinadas posiciones. No hay una comprensión de los conceptos, sólo una asociación entre una palabra y una figura determinada. El concepto de ángulo se asocia a longitud de los lados. Engranajes: se observan grandes dificultades de comprensión de desplazamientos y direcciones. No son capaces de relacionar nociones matemáticas, que ya poseen, con este problema para solucionarlo. La deformación a que someten los niños las enseñanzas para adaptarlas a su estructura mental ponen de manifiesto tales estructuras. Los conceptos elaborados por el niño tienen una alta dependencia de las configuraciones perceptivas y anecdóticas sin alcanzar verdadera comprensión. Se observa gran dificultad para aplicar estas nociones a problemas concretos. Recomendaciones curriculares para mejorar la enseñanza de las Matemáticas.
Resumo:
Medir la madurez académica de los alumnos al terminar la EGB. Se pretende conocer el nivel de conocimiento y de comprensión y las destrezas desarrolladas en las áreas de Ciencias, Matemáticas y Lenguaje durante toda la EGB. De la población de alumnos de octavo de EGB de la provincia de Zaragoza durante el curso 1977-78, se extrajo mediante muestreo estratificado aleatorio con afijación proporcional una muestra de 886 alumnos. Los criterios de estratificación fueron: tipo de centro y tamaño de la población. En primer lugar, se elaboró la prueba de madurez académica, realizándose un estudio piloto para corregir probables defectos de la misma y estimar debidamente el tiempo de aplicación. La prueba pretende medir el rendimiento de los alumnos en Matemáticas, Ciencias y Lenguaje y el rendimiento global. Para ciertos análisis se definieron como variables independientes el tipo de centro y lugar de ubicación del mismo (estrato) y el sexo de los alumnos. Las variables dependientes eran el rendimiento en las diferentes áreas y el rendimiento global. Prueba de madurez académica para las áreas de Lengua, Matemáticas y Ciencias elaborada ad-hoc. Para analizar las cualidades métricas de la prueba se utilizaron índices de consistencia interna (fiabilidad K-20), e índices de dificultad de ítems y de discriminación de ítems. Para el análisis global de datos se calcularon índices de tendencia central y dispersión, frecuencias y porcentajes. Para el análisis por estratos y sexo se utilizó el análisis de varianza. Respecto a las cualidades métricas de la prueba, se observa una alta consistencia interna para la prueba global (Kr-20= 0.85) y una fiabilidad aceptable de las pruebas de cada área. Así mismo, la capacidad de discriminación también se asegura por los índices obtenidos. Del análisis global de los datos se deduce que el rendimiento académico de los alumnos es bajo, no alcanzándose, en gran medida, los objetivos de madurez académica establecidos para el término de la EGB. En el análisis por estratos y sexo se observa que las puntuaciones obtenidas por los alumnos de centros estatales son, como promedio, más elevadas que las de los centros no estatales. En el área donde más se acentúa esta diferencia es en la de Lenguaje. No existen diferencias significativas en el rendimiento global respecto a la variable sexo. Sin embargo, se observa un rendimiento significativamente mayor de los varones en el área de Ciencias y de las mujeres en el área de Lengua. La EGB se plantea unos objetivos que no son alcanzables por los alumnos, ni siquiera por los mejor dotados y con un historial académico más selecto.
Resumo:
Implicaciones de la Matemática moderna en la enseñanza, en relación con el alumno y profesor. 4 Partes: I. Fines y contenidos de la enseñanza matemática actual, revisar programas anteriores, objetivos programados y relación con otras materias. II. Metodología matemática, métodos actuales y desarrollos específicos. III. Recursos y evaluación, estado de implantación de la nueva Matemática, preparación del profesorado y papel del seminario didáctico. IV. Tratamiento estadístico de datos. Resultados sobre la adquisición de los objetivos de la taxonomía NLSMA, influencia de diversas variables (factores de éxito, Standford) en la dificultad de los problemas y estudio de la conducta del profesor, por el método Amidon-Flanders. Para modelo Standford, 5 centros de BUP (400 alumnos) más otra de 300 universitarios. Taxonomía NLSMA, varios centros (470 alumnos). Método Flanders: 6 profesores. Taxonomía NLSMA: cuestionario, bloques con número desigual. Modelo Standford: variables independientes: tipo de problema, n pasos en la resolución, inclusión de información superflua y existencia de frase clave. Diseño factorial 4x2x2x2. Evaluación de profesorado y seminarios: encuesta por correo. Criterios muestrales: tamaño del centro, zona geográfica. Variables controladas: centro, profesor y provincia. Método Flanders, grabación de las clases. Sistema de codificación de conductas e interacciones modificado con 10 categorías de ocurrencia. Sobre textos escolares concluyen que su extensión e interpretación es diversa, no plantean objetivos de conducta y adolecen de errores conceptuales. De la encuesta al profesorado extrae que casi todos son matemáticos, con poca formación adiccional. La mitad prefieren el sistema tradicional de enseñanza y aceptan la matemática moderna. Respecto a los seminarios, pobre funcionamiento. No esta extendida la evaluación previa del nivel del alumno y los programas no suelen incluir procedimientos de rectificación. El método NLSMA, útil para analizar las adquisiciones progresivas obteniendose agrupaciones características según niveles. La influencia de variables Standford es significativa y depende del nivel académico. La observación del profesor revela patrones de comportamiento característicos. Método válido para estudiar la interacción profesor-alumno. Ofrece programación completa y cuestionarios de evaluación para diversas áreas de Matemáticas. Resalta la importancia del seminario para organizar y evaluar. Relación maestro-alumno-materia como factor decisivo en el aprendizaje.
Resumo:
Diseñar un programa que adecúe las disposiciones oficiales del MEC a lo que realmente el alumno puede aprender con los medios y tiempo disponible. La forman alumnos de 20 centros de la provincia de Granada. Para el diseño del programa, variable dependiente, se tienen en cuenta las variables independientes: adecuación de los cuestionarios oficiales a los objetivos de conducta expresados en la taxonomía NLSMA y al tiempo realmente disponible; fijación de objetivos por nivel y unidad didáctiva; elaboración de materiales de consulta y trabajo del alumno; motivación; homogeneización de las técnicas de evaluación. Para evaluar la idoneidad y fijar la facilidad o dificultad de cada objetivo-contenido programado (variables dependientes), se considera la variable independiente del rendimiento de los alumnos en la fase pretest. Para evaluar la idoneidad de los objetivos-contenidos programados y modificados en la fase pretest (variable dependiente) se considera la variable independiente de la homogeneidad-optimización del rendimiento escolar en la fase control. Los resultados aparecen pormenorizados para cada nivel investigado, sexto, séptimo y octavo de EGB, y para cada fase de la investigación, experimental y control. Los ítems, expresión de los objetivos formulados, se distribuyen por su dificultad (muy difícil, menos de un 60 de aciertos; difícil, entre 60 y 70 idóneo, 75 de aciertos; fácil entre el 80 y 90; muy fácil, más del 90), siguiendo la curva normal con asimetrías a derecha e izquierda, según los niveles y fases, lo que confirma su adecuación al modelo preestablecido. En cada fase, se determinan los bloques programáticos más importantes, los objetivos de conducta a los que responden y el número de ítems adecuado para su evaluación. En la fase control, tras la comparación y confirmación de la bondad de los cambios efectuados, se propone un cuestionario definitivo de los contenidos a programar. Quincenalmente se comparan con los cuestionarios oficiales del MEC. Se ha establecido científicamente un programa matemático graduable en sus dificultades, apto para ser utilizado por cualquier educador y adaptable a las diferentes capacidades individuales. Se ha formalizado un inventario de objetivos matemáticos, con sus niveles de éxito y dificultades más importantes, objetivamente mensurable y que, junto a las técnicas de evaluación de programas, forma un primer banco de información a disposición de educadores y evaluadores. En este sentido, se ofrecen varios cientos de ítems de pruebas de control a fin de formar otro banco de reactivos de prueba. Como conclusión final, se confirma la viabilidad de un modelo de investigación de programas escolares que permite redactar el currículum sobre bases empíricas.