962 resultados para annealing Al2O3
Resumo:
于2010-11-23批量导入
Resumo:
国家自然科学基金
Resumo:
Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while lid? annealed in iron phospbide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.
Resumo:
The variation of the structure, morphology and the electrical properties of thin amorphous silicon films caused by Rapid Thermal Annealing is studied. The films annealed at 1200degreesC for 2 minutes change their structure to polycrystalline and as a result their resistivity decreases by 4 orders of magnitude. Due to the small thickness of the as deposited amorphous silicon the obtained poly-Si is strongly irregular and has many discontinuities in its texture.
Resumo:
The quantum well intermixing of Ga(In)NAs/GaAs simple quantum well (SQW) using SiO2 encapsulation and rapid thermal annealing has been studied. Obvious enhanced intermixing of GaInNAs/GaAs SQW was observed due to the localized SiO2 capping layer and RTA at temperature between 650degreesC and 900degreesC. The selective intermixing strongly depends on N composition and In composition. An obvious selective intermixing had been found in the samples with small N composition and/or high In composition.
Resumo:
In this paper, a graded Si1-xGex buffer and thereafter the Si0.8Ge0.2 uniform layer were grown at a little lower temperature to keep the surface smooth, which will provide the gliding dislocations a wider channel and less low energy nucleation sites on the surface. Therefore, the dislocation density may be reduced. However, the motion of the existing threading dislocations cannot retain equilibrium at lower temperature, strain will accumulate and be in favor of the nucleation of dislocation. In situ annealing was used to reduce the residual strain in the sample during the low-temperature growth of SiGe. A fully relaxed Si0.8Ge0.2 layer was obtained with the surface dislocation density of 3x10(5)cm(-2).
Resumo:
The effect of thermal annealing on the Raman spectrum of Si0.33Ge0.67 alloy grown on Si (100) by molecular beam epitaxy is investigated in the temperature range of 550-800 degrees C. For annealing below 700 degrees C, interdiffusion at the interface is negligible and the residual strain plays the dominant role in the Raman shift. The strain-shift coefficients for Si-Ge and Ge-Ge phonon modes are determined to be 915 +/- 215 cm(-1) and 732 +/- 117 cm(-1), respectively. For higher temperature annealing, interdiffusion is significant and strongly affects the Raman shift and the spectral shape.
Resumo:
The effects of high temperature annealing on the microstructure and optical properties of luminescent SiOx:H films have been investigated. Micro-Raman scattering and IR absorption, in combination with atomic force microscopy (AFM), provide evidence for the existence of both a-Si clusters in the as-grown a-SiOx:H and Si nanocrystals in the 1170 degrees C annealed films. The dependence of optical coefficients (alpha) on photon energy (h nu) near the absorption edge (E-g) is found to follow the square root law: (alpha h nu)(1/2) proportional to (E-g - h nu), indicating that nano-Si embedded in SiO2 is still an indirect material. A comparison of the deduced absorption edge with the PL spectra shows an obvious Stokes shift, suggesting that phonons should be involved in the optical transition process.
Resumo:
Wurtzite single crystal GaN films have been grown onto a gamma-Al2O3/Si(001) substrate in a horizontal-type low pressure MOVPE system. A thin gamma-Al2O3 layer is an intermediate layer for the growth of single crystal GaN on Si although it is only an oriented polycrystal film as shown by reflection high electron diffraction. Moreover, the oxide is not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN layer as studied by transmission electron microscopy. Double crystal x-ray linewidth of (0002) peak of the 1.3 mu m sample is 54 arcmin and the films have heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature is observed by photoluminescence spectroscopy. Raman scattering does not detect any cubic phase coexistence.
Resumo:
Unintentionally doped and Si-doped single crystal n-GaN films have been grown on alpha-Al2O3 (0001) substrates by LP-MOCVD. Room temperature photoluminescence measurement showed that besides the bandedges, the spectrum of an undoped sample was a broad deep-level emission band peaking from 2.19 to 2.30eV, whereas the spectrum for a Si-doped sample was composed of a dominant peak of 2.19eV and a shoulder of 2.32eV. At different temperatures, photoconductance buildup and its decay were also observed for both samples.. The likely origins of persistent photoconductivity and yellow luminescence, which might be associated with deep defects inclusive of either Ga vacancy(V-Ga)/Ga vacancy complex induced by impurities or N antisite (N-Ga), will be proposed.
Resumo:
Self-organized InAs quantum; dots sheets are grown on GaAs(100) substrate and tapped by 80nm GaAs layer with molecular beam epitaxy. Samples were annealed and characterized with Raman spectra, transmission electron microscopy (TEM) and photolumincscence (PL). The Raman spectra indicates arsenic clusters in the GaAs capping layer. The TEM analysis revealed the relaxation of strain in some InAs islands with the introduction of the network of 90 dislocations. In addition, the structural changes also lead to the changes of the PL spectra from me InAs islands. Their correlation was discussed, Our results suggest:est that annealing may be used to intentionally modify me properties of self-organized InAs islands on GaAs.
Resumo:
In this study, we report the dependences of infrared luminescence properties of Er-implanted GaN thin films (GaN:Er) on the kinds of substrates used to grow GaN, the growth techniques of GaN, the implantation parameters and annealing procedures. The experimental results showed that the photoluminescence (PL) intensity at 1.54 mum was severely influenced by different kinds of substrates. The integrated PL peak intensity from GaN:Er /Al2O3 (00001) was three and five times stronger than that from GaN:Er /Si (111) grown by molecular beam epitaxy (MBE) and by metalorganic chemical vapor deposition (MOCVD), respectively. The PL spectra observed from GaN:Er/Al2O3 (0001) grown by MOCVD and by MBE displayed a similar feature, but those samples grown by MOCVD exhibited a stronger 1.54 mum PL. It was also found that there was a strong correlation between the PL intensity with ion implantation parameters and annealing procedures. Ion implantation induced damage in host material could be only partly recovered by an appropriate annealing temperature procedure. The thermal quenching of PL from 15 to 300 K was also estimated. In comparison with the integrated PL intensity at 15 K, it is reduced by only about 30 % when going up to 300 K for GaN:Er/Al2O3 sample grown by MOCVD. Our results also show that the strongest PL intensity comes from GaN:Er grown on Al2O3 substrate by MOCVD. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we report the fabrication of Si-based double hetero-epitaxial SOI materials Si/gamma-Al2O3/Si. First, single crystalline gamma-Al2O3 (100) insulator films were grown epitaxially on Si(100) by LPCVD, and then, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a CVD method similar to silicon on sapphire (SOS) epitaxial growth. The Si/gamma-Al2O3 (100)/Si(100) SOI materials are characterized in detail by RHEED, XRD and AES techniques. The results demonstrate that the device-quality novel SOI materials Si/gamma-Al2O3 (100)/Si(100) has been fabricated successfully and can be used for application of MOS device.
Resumo:
nThermal processing of strained ln(0.2)Ga(0.8)As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It was found that rapid thermal annealing can improve the 77 K photoluminescence efficiency and electron emission from the active layer, due to removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of post-growth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.
Resumo:
The effects of annealing time and Si cap layer thickness: on the thermal stability of the Si/SiGe/Si heterostructures deposited by disilane and solid-Ge molecule beam epitaxy were investigated. It is found that in the same strain state of the SiGe layers the annealing time decreases with increasing Si cap layer thickness. This effect is analyzed by a force-balance theory and an equation has been obtained to characterize the relation between the annealing time and the Si cap layer thickness. (C) 2001 Elsevier Science B.V. All rights reserved.