991 resultados para GaAs (311)B
Resumo:
The effect of thermal annealing of InAs/GaAs quantum dots (QDs) with emission wavelength at 1.3 mu m have been investigated by photoluminescence (PL) and transmission electron microscopy (TEM measurements. There is a dramatic change in the A spectra when the annealing temperature is raised up to 800 degrees C: an accelerated blushifit of the main emission peak of QDs together with an inhomogeneous broadening of the linewidth. The TEM images shows that the lateral size of normal QDs decreases as the annealing temperature is increased, while the noncoherent islands increase their size and densit. A small fraction of the relative large QDs contain dislocations when the annealing temperature increases up to 800 degrees C. The latter leads to the strong decrease of the PL intensity.
Resumo:
The nonradiative recombination effect on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by photoluminescence and time-resolved photoluminescence under various excitation intensities and temperatures. It is found that the PL decay dynamics strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual non-exponential behavior and show a convex shape. By introducing a new concept of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. In the cw PL measurement, a rapid PL quenching is observed even at very low temperature and is of the excitation power dependence. These results further demonstrate that the non-radiative recombination process plays a very important role on the optical properties of GaInNAs/GaAs quantum wells.
Resumo:
Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm(2) only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.
Resumo:
This work was supported by the National Research Projects of China (grant numbers are 60525406, 60736031, 60806018, 60906026, 2006CB604903, 2007AA03Z446 and 2009AA03Z403, 10990100, respectively). The authors would like to thank P Liang, Y Hu, H Sun, X L Zhang, B J Sun, H L Zhen and N Li for their help in processing and characterization.
Resumo:
We have systematically studied the temperature dependent photoluminescence of a self-assembled In(Ga)As/GaAs quantum dot (QD) system with different areal densities from similar to 10(9) to similar to 10(11) cm(-2). Different carrier channels are revealed experimentally and confirmed theoretically via a modified carrier equation model considering a new carrier transfer channel, i.e. continuum states ( CS). The wetting layer is demonstrated to be the carrier quenching channel for the low-density QDs but the carrier transfer channel for the high-density QDs. In particular, for the InGaAs/GaAs QDs with a medium density of similar to 10(10) cm(-2), the CS is verified to be an additional carrier transfer channel in the low temperature regime of 10-60 K, which is studied in detail via our models. The possible carrier channels that act on different temperature regimes are further discussed, and it is demonstrated that density is not a crucial factor in determining the carrier lateral coupling strength.
Resumo:
This paper describes the design and fabrication process of a two-dimensional GaAs-based photonic crystal nanocavity and analyzes the optical characterization of cavity modes at room temperature. Single InAs/InGaAs quantum dots (QDs) layer was embedded in a GaAs waveguide layer grown on an Al0.7Ga0.3As layer and GaAs substrate. The patterning of the structure and the membrane release were achieved by using electron-beam lithography, reaction ion etching, inductively coupled plasma etching and selective wet etching. The micro-luminescence spectrum is recorded from the fabricated nanocavities, and it is found that some high-order cavity modes are clearly observed besides the lowest-order resonant mode is exhibited in spite of much high rate of nonradiative recombination. The variance of resonant modes is also discussed as a function of r/a ratio and will be used in techniques aimed to improve the probability of achieving spectral coupling of a single QD to a cavity mode.
Resumo:
We present a systematic investigation of calculating quantum dots (QDs) energy levels using finite element method in the frame of eight-band k . p method. Numerical results including piezoelectricity, electron and hole levels, as yell as wave functions are achieved. In the calculation of energy levels, we do observe spurious solutions (SSs) no matter Burt-Foreman or symmetrized Hamiltonians are used. Different theories are used to analyse the SSs, we find that the ellipticity theory can give a better explanation for the origin of SSs and symmetrized Hamiltonian is easier to lead to SSs. The energy levels simulated with the two Hamiltonians are compared to each other after eliminating SSs, different Hamiltonians cause a larger difference on electron energy levels than that on hole energy levels and this difference decreases with the increase of QD size.
Resumo:
We have investigated temperature dependent photoluminescence of both buried and surface self-assembled InAs/GaAs quantum dots with an areal density up to similar to 10(11)/cm(2). Different from the buried quantum dots, the peak energy of surface quantum dots shows a blueshift relative to the bulk material variation from 15 to 130K. Besides the line width and the integrated intensity both first decrease and then increase in this temperature interval. The observed phenomena can be explained by carrier trapping effects by some shallow localized centers near the surface quantum dots.
Resumo:
For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N-(Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.
Resumo:
The dynamic process of light illumination of GaAs is studied numerically in this paper to understand the photoquenching characteristics of the material. This peculiar behavior of GaAs is usally ascribed to the existence of EL2 states and their photodriven metastable states. To understand the conductivity quenching, we have introduced nonlinear terms describing the recombination of the nonequilibrium free electrons and holes into the calculation. Though some photoquenching such as photocapacitance, infrared absorption, and electron-paramagnetic-resonance quenching can be explained qualitatively by only considering the internal transfer between the EL2 state and its metastability, it is essential to take the recombination into consideration for a clear understanding of the photoquenching process. The numerical results and approximate analytical approach are presented in this paper for the first time to our knowledge. The calculation gives quite a reasonable explanation for n-type semiconducting GaAs to have infrared absorption quenching while lacking photoconductance quenching. Also, the calculation results have allowed us to interpret the enhanced photoconductance phenomenon following the conductance quenching in typical semi-insulating GaAs and have shown the expected thermal recovery temperature of about 120 K. The numerical results are in agreement with the reported experiments and have diminished some ambiguities in previous works.