18 resultados para GaAs (311)B

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a measurement of direct CP violation in b to s+gamma Acp, and the measurement of a difference between Acp for neutral B and charged B mesons, Delta A_{X_s\gamma}, using 429 inverse femtobarn of data recorded at the Upsilon(4S) resonance with the BABAR detector. B mesons are reconstructed from 16 exclusive final states. Particle identification is done using an algorithm based on Error Correcting Output Code with an exhaustive matrix. Background rejection and best candidate selection are done using two decision tree-based classifiers. We found $\acp = 1.73%+-1.93%+-1.02% and Delta A_X_sgamma = 4.97%+-3.90%+-1.45% where the uncertainties are statistical and systematic respectively. Based on the measured value of Delta A_X_sgamma, we determine a 90% confidence interval for Im C_8g/C_7gamma, where C_7gamma and C_8g are Wilson coefficients for New Physics amplitudes, at -1.64 < Im C_8g/C_7gamma < 6.52.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar.

Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry.

The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires.

Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since its discovery in 1896, the Buchner reaction has fascinated chemists for more than a century. The highly reactive nature of the carbene intermediates allows for facile dearomatization of stable aromatic rings, and provides access to a diverse array of cyclopropane and seven-membered ring architectures. The power inherent in this transformation has been exploited in the context of a natural product total synthesis and methodology studies.

The total synthesis work details efforts employed in the enantioselective total synthesis of (+)-salvileucalin B. The fully-substituted cyclopropane within the core of the molecule arises from an unprecedented intramolecular Buchner reaction involving a highly functionalized arene and an α-diazo-β-ketonitrile. An unusual retro-Claisen rearrangement of a complex late-stage intermediate was discovered on route to the natural product.

The unique reactivity of α-diazo-β-ketonitriles toward arene cyclopropanation was then investigated in a broader methodological study. This specific di-substituted diazo moiety possesses hitherto unreported selectivity in intramolecular Buchner reactions. This technology was enables the preparation of highly functionalized norcaradienes and cyclopropanes, which themselves undergo various ring opening transformations to afford complex polycyclic structures.

Finally, an enantioselective variant of the intramolecular Buchner reaction is described. Various chiral copper and dirhodium catalysts afforded moderate stereoinduction in the cyclization event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described in this dissertation includes fundamental investigations into three surface processes, namely inorganic film growth, water-induced oxidation, and organic functionalization/passivation, on the GaP and GaAs(001) surfaces. The techniques used to carry out this work include scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. Atomic structure, electronic structure, reaction mechanisms, and energetics related to these surface processes are discussed at atomic or molecular levels.

First, we investigate epitaxial Zn3P2 films grown on the Ga-rich GaAs(001)(6×6) surface. The film growth mechanism, electronic properties, and atomic structure of the Zn3P2/GaAs(001) system are discussed based on experimental and theoretical observations. We discover that a P-rich amorphous layer covers the crystalline Zn3P2 film during and after growth. We also propose more accurate picture of the GaP interfacial layer between Zn3P2 and GaAs, based on the atomic structure, chemical bonding, band diagram, and P-replacement energetics, than was previously anticipated.

Second, DFT calculations are carried out in order to understand water-induced oxidation mechanisms on the Ga-rich GaP(001)(2×4) surface. Structural and energetic information of every step in the gaseous water-induced GaP oxidation reactions are elucidated at the atomic level in great detail. We explore all reasonable ground states involved in most of the possible adsorption and decomposition pathways. We also investigate structures and energies of the transition states in the first hydrogen dissociation of a water molecule on the (2×4) surface.

Finally, adsorption structures and thermal decomposition reactions of 1-propanethiol on the Ga-rich GaP(001)(2×4) surface are investigated using high resolution STM, XPS, and DFT simulations. We elucidate adsorption locations and their associated atomic structures of a single 1-propanethiol molecule on the (2×4) surface as a function of annealing temperature. DFT calculations are carried out to optimize ground state structures and search transition states. XPS is used to investigate variations of the chemical bonding nature and coverage of the adsorbate species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.

In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.

In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.

One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.

The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ritterazine and cephalostatin natural products have biological activities and structures that are interesting to synthetic organic chemists. These products have been found to exhibit significant cytotoxicity against P388 murine leukemia cells, and therefore have the potential to be used as anticancer drugs. The ritterazines and cephalostatins are steroidal dimers joined by a central pyrazine ring. Given that the steroid halves are unsymmetrical and highly oxygenated, there are several challenges in synthesizing these compounds in an organic laboratory.

Ritterazine B is the most potent derivative in the ritterazine family. Its biological activity is comparable to drugs that are being used to treat cancer today. For this reason, and the fact that there are no reported syntheses of ritterazine B to date, our lab set out to synthesize this natural product.

Herein, efforts toward the synthesis of the western fragment of ritterazine B are described. Two different routes are explored to access a common intermediate. An alkyne conjugate addition reaction was initially investigated due to the success of this key reaction in the synthesis of the eastern fragment. However, it has been found that a propargylation reaction has greater reactivity and yields, and has the potential to reduce the step count of the synthesis of the western fragment of ritterazine B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three subjects related to epitaxial GaAs-GaAlAs optoelectronic devices are discussed in this thesis. They are:

1. Embedded Epitaxy

This is a technique of selective multilayer growth of GaAs- Ga1-xAlxAs single crystal structures through stripe openings in masking layers on GaAs substrates. This technique results in prismatic layers of GaAs and Ga1-xAlxAs "embedded" in each other and leads to controllable uniform structures terminated by crystal faces. The dependence of the growth habit on the orientation of the stripe openings has been studied. Room temperature embedded double heterostructure lasers have been fabricated using this technique. Threshold current densities as low as 1.5 KA/cm2 have been achieved.

2. Barrier Controlled PNPN Laser Diode

It is found that the I-V characteristics of a PNPN device can be controlled by using potential barriers in the base regions. Based on this principle, GaAs-GaAlAs heterostructure PNPN laser diodes have been fabricated. GaAlAs potential barriers in the bases control not only the electrical but also the optical properties of the device. PNPN lasers with low threshold currents and high breakover voltage have been achieved. Numerical calculations of this barrier controlled structure are presented in the ranges where the total current is below the holding point and near the lasing threshold.

3. Injection Lasers on Semi-Insulating Substrates

GaAs-GaAlAs heterostructure lasers fabricated on semi-insulating substrates have been studied. Two different laser structures achieved are: (1) Crowding effect lasers, (2) Lateral injection lasers. Experimental results and the working principles underlying the operation of these lasers are presented. The gain induced guiding mechanism is used to explain the lasers' far field radiation patterns. It is found that Zn diffusion in Ga1-xAlxAs depends on the Al content x, and that GaAs can be used as the diffusion mask for Zn diffusion in Ga1-xAlxAs. Lasers having very low threshold currents and operating in a stable single mode have been achieved. Because these lasers are fabricated on semi-insulating substrates, it is possible to integrate them with other electronic devices on the same substrate. An integrated device, which consists of a crowding effect laser and a Gunn oscillator on a common semi-insulating GaAs substrate, has been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predictions of the SU(3) flavor symmetry of the strong interactions for the weak decay of charmed baryons and B-mesons are detailed. It is hoped that comparison between these predictions and experiment will shed some light on the underlying dynamics involved in these weak decays. Although only a few decay modes of the charmed baryons and B-mesons have been studied experimentally it is hoped that the next generation of B-factories and even Z-decays at LEP will provide enough events to test these predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To make stable and reproducible contacts to GaAs, metals which react with GaAs in the solid-phase should be favored. In this study, contacts formed employing Pd/TiN/Pd/Ag, Pd:Mg/TiN/Pd:Mg/Ag and Ru/TiN/Ru/Ag are studied. The TiN layer is included to investigate its application as diffusion barrier in these metallizations. Contacts to n-GaAs are rectifying and the value of barrier height is modified upon annealing. Contacts to p-GaAs are initially rectifying but exhibit ohmic behaviour after annealing. The modifications in the electrical properties are attributed to the solid-phase reaction of metal and GaAs. The integrity of the contacts relies critically on the success of TiN to prevent the intermixing of Ag overlayer and the underlying layers. At elevated annealing temperatures (450°C), TiN fails to function as a diffusion barrier. As a result, the properties of the contact deteriorates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression. Several microRNAs have been implicated in altering hematopoietic cell fate decisions. Importantly, deregulation of many microRNAs can lead to deleterious consequences in the hematopoietic system, including the onset of cancer, autoimmunity, or a failure to respond effectively to infection. As such, microRNAs fine-tune the balance between normal hematopoietic output and pathologic consequences. In this work, we explore the role of two microRNAs, miR-132 and miR-125b, in regulating hematopoietic stem cell (HSC) function and B cell development. In particular, we uncover the role of miR-132 in maintaining the appropriate balance between self-renewal, differentiation, and survival in aging HSCs by buffering the expression of a critical transcription factor, FOXO3. By maintain this balance, miR-132 may play a critical role in preventing aging-associated hematopoietic conditions such as autoimmune disease and cancer. We also find that miR-132 plays a critical role in B cell development by targeting a key transcription factor, Sox4, that is responsible for the differentiation of pro-B cells into pre-B cells. We find that miR-132 regulates B cell apoptosis, and by delivering miR-132 to mice that are predisposed to developing B cell cancers, we can inhibit the formation of these cancers and improve the survival of these mice. In addition to miR-132, we uncovered the role of another critical microRNA, miR-125b, that potentiates hematopoietic stem cell function. We found that enforced expression of miR-125b causes an aggressive myeloid leukemia by downregulation of its target Lin28a. Importantly, miR-125b also plays a critical role in inhibiting the formation of pro-B cells. Thus, we have discovered two microRNAs with important roles in regulating normal hematopoiesis, and whose dregulation can lead to deleterious consequences such as cancer in the aging hematopoietic system. Both miR-132 and miR-125b may therefore be targeted for therapeutics to inhibit age-related immune diseases associated with the loss of HSC function and cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tryptophan and unnatural tryptophan derivatives are important building blocks for the total synthesis of natural products, as well as the development of new drugs, biological probes, and chiral small molecule catalysts. This thesis describes various catalytic methods for the preparation of tryptophan derivatives as well as their functionalization and use in natural product total synthesis.

Herein, the tandem Friedel–Crafts conjugate addition/asymmetric protonation reaction between 2-substituted indoles and methyl 2-acetamidoacrylate to provide enantioenriched trytophans is reported. This method inspired further work in the area of transition metal catalyzed arylation reactions. We report the development of the coppercatalyzed arylation of tryptamine and tryptophan derivatives. The utility of these transformations is highlighted in the five-step syntheses of the natural products (+)-naseseazine A and B. Further work on the development of a mild and general Larock indolization protocol to access unnatural tryptophans is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopiperazine (DKP) motif is found in a wide range of biologically active natural products. This work details our efforts toward two classes of DKP-containing natural products.

Class one features the pyrroloindoline structure, derived from tryptophans. Our group developed a highly enantioselective (3 + 2) formal cycloaddition between indoles and acrylates to provide pyrroloindoline products possessing three stereocenters. Utilizing this methodology, we accomplished asymmetric total synthesis of three natural products: (–)-lansai B, (+)-nocardioazines A and B. Total synthesis of (–)-lansai B was realized in six steps, and featured an amino acid dimerization strategy. The total synthesis of (+)-nocardioazine B was also successfully completed in ten steps. Challenges were met in approaching (+)-nocardioazine A, where a seemingly easy last-step epoxidization did not prove successful. After re-examining our synthetic strategy, an early-stage epoxidation strategy was pursued, which eventually yielded a nine-step total synthesis of (+)-nocardioazine A.

Class two is the epidithiodiketopiperazine (ETP) natural products, which possesses an additional episulfide bridge in the DKP core. With the goal of accessing ETPs with different peripheral structures for structure-activity relationship studies, a highly divergent route was successfully developed, which was showcased in the formal synthesis of (–)-emethallicin E and (–)-haematocin, and the first asymmetric synthesis of (–)-acetylapoaranotin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lowest T = 2 states have been identified and studied in the nuclei 12C, 12B, 20F and and 28Al. The first two of these were produced in the reactions 14C(p,t)12C and 14C (p,3He)12B, at 50.5 and 63.4 MeV incident proton energy respectively, at the Oak Ridge National Laboratory. The T = 2 states in 20F and 28Al were observed in (3He,p) reactions at 12-MeV incident energy, with the Caltech Tandem accelerator.

The results for the four nuclei studied are summarized below:

(1) 12C: the lowest T = 2 state was located at an excitation energy of 27595 ± 20 keV, and has a width less than 35 keV.

(2) 12B: the lowest T = 2 state was found at an excitation energy of 12710 ± 20 keV. The width was determined to be less than 54 keV and the spin and parity were confirmed to be 0+. A second 12B state (or doublet) was observed at an excitation energy of 14860 ± 30 keV with a width (if the group corresponds to a single state) of 226 ± 30 keV.

(3) 20F: the lowest T = 2 state was observed at an excitation of 6513 ± 5 keV; the spin and parity were confirmed to be 0+. A second state, tentatively identified as T = 2 from the level spacing, was located at 8210 ± 6 keV.

(4) 28Al: the lowest T = 2 state was identified at an excitation of 5997 ± 6 keV; the spin and parity were confirmed to be 0+. A second state at an excitation energy of 7491 ± 11 keV is tentatively identified as T = 2, with a corresponding (tentative) spin and parity assignment Jπ = 2+.

The results of the present work and the other known masses of T = 2 states and nuclei for 8 ≤ A ≤ 28 are summarized, and massequation coefficients have been extracted for these multiplets. These coefficients were compared with those from T = 1 multiplets, and then used to predict the mass and stability of each of the unobserved members of the T = 2 multiplets.