30 resultados para Theoretische Chemie, Coupled-Cluster-Theorie


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Dissertation demonstriert und verbessert die Vorhersagekraft der Coupled-Cluster-Theorie im Hinblick auf die hochgenaue Berechnung von Moleküleigenschaften. Die Demonstration erfolgt mittels Extrapolations- und Additivitätstechniken in der Single-Referenz-Coupled-Cluster-Theorie, mit deren Hilfe die Existenz und Struktur von bisher unbekannten Molekülen mit schweren Hauptgruppenelementen vorhergesagt wird. Vor allem am Beispiel von cyclischem SiS_2, einem dreiatomigen Molekül mit 16 Valenzelektronen, wird deutlich, dass die Vorhersagekraft der Theorie sich heutzutage auf Augenhöhe mit dem Experiment befindet: Theoretische Überlegungen initiierten eine experimentelle Suche nach diesem Molekül, was schließlich zu dessen Detektion und Charakterisierung mittels Rotationsspektroskopie führte. Die Vorhersagekraft der Coupled-Cluster-Theorie wird verbessert, indem eine Multireferenz-Coupled-Cluster-Methode für die Berechnung von Spin-Bahn-Aufspaltungen erster Ordnung in 2^Pi-Zuständen entwickelt wird. Der Fokus hierbei liegt auf Mukherjee's Variante der Multireferenz-Coupled-Cluster-Theorie, aber prinzipiell ist das vorgeschlagene Berechnungsschema auf alle Varianten anwendbar. Die erwünschte Genauigkeit beträgt 10 cm^-1. Sie wird mit der neuen Methode erreicht, wenn Ein- und Zweielektroneneffekte und bei schweren Elementen auch skalarrelativistische Effekte berücksichtigt werden. Die Methode eignet sich daher in Kombination mit Coupled-Cluster-basierten Extrapolations-und Additivitätsschemata dafür, hochgenaue thermochemische Daten zu berechnen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin-Restricted Coupled-Cluster-Theorie fuer offenschaligeZustaende Die Berechnung von Energien und Eigenschaften offenschaligerAtome undMolekuele mit Hilfe der hochgenauenCoupled-Cluster-(CC)-Theoriewar bisher mit einem - im Vergleich zur BerechnunggeschlossenschaligerZustaende - erhoehten Rechenaufwand und der sogenannten'Spinkontamination' behaftet. Um diesen Problemenentgegenzuwirken,stellten P.G.Szalay und J.Gauss die 'Spin-RestrictedCoupled-Cluster-Theorie' vor. Im Rahmen dieser Arbeit wird die urspruenglich aufDublett-Zustaendebeschraenkte Theorie so verallgemeinert, dass jederbeliebige Spinzustandmit einem einheitlichen Satz von Gleichungen beschriebenwerden kann. Dadie Moller-Plesset-(MP)-Stoerungstheorie bei der BerechnungoffenschaligerZustaende mit aehnlichen Problemen behaftet ist, wirddarueberhinaus dieSpin-Restricted-(SR)-MP-Stoerungstheorie zweiter und dritterOrdnungeingefuehrt. Um Molekueleigenschaften berechnen zu koennen,werdenanalytische Ableitungen der Energie sowohl fuer den SR-CC-als auch denSR-MP-Ansatz hergeleitet. Bei den folgenden Testrechnungenstellt sichheraus, dass sowohl SR-CC- als auch SR-MP-Ansaetze diegleiche Genauigkeitbieten wie konventionelle CC- und MP-Ansaetze. Dabei sinddieSpinerwartungswerte der SR-CC-Wellenfunktionen identisch mitdem exaktenWert. Im Rahmen der Testrechnungen stellt sich heraus, dassder SR-CC-Ansatz nicht 'size-konsistent', der numerische Fehler abervernachlaessigbar klein ist. Abschliessend werden dieHintergruende derfehlenden 'Size-Konsistenz' diskutiert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-Cluster-Theorie (CC) ist in der heutigen Quantenchemie eine der erfolgreichsten Methoden zur genauen Beschreibung von Molekülen. Die in dieser Arbeit vorgestellten Ergebnisse zeigen, daß neben den Berechnungen von Energien eine Reihe von Eigenschaften wie Strukturparameter, Schwingungsfrequenzen und Rotations-Schwingungs-Parameter kleiner und mittelgrofler Moleküle zuverlässig und präzise vorhergesagt werden können. Im ersten Teil der Arbeit wird mit dem Spin-adaptierten Coupled-Cluster-Ansatz (SA-CC) ein neuer Weg zur Verbesserung der Beschreibung von offenschaligen Systemen vorgestellt. Dabei werden zur Bestimmung der unbekannten Wellenfunktionsparameter zusätzlich die CC-Spingleichungen gelöst. Durch dieses Vorgehen wird gewährleistet, daß die erhaltene Wellenfunktion eine Spineigenfunktion ist. Die durchgeführte Implementierung des Spin-adaptierten CC-Ansatzes unter Berücksichtigung von Einfach- und Zweifachanregungen (CCSD) für high-spin Triplett-Systeme wird ausführlich erläutert. Im zweiten Teil werden CC-Additionsschemata vorgestellt, die auf der Annahme der Additivität von Elektronenkorrelations- und Basissatzeffekten basieren. Die etablierte Vorgehensweise, verschiedene Beiträge zur Energie mit an den Rechenaufwand angepassten Basissätzen separat zu berechnen und aufzusummieren, wird hier auf Gradienten und Kraftkonstanten übertragen. Für eine Beschreibung von Bindungslängen und harmonischen Schwingungsfrequenzen mit experimenteller Genauigkeit ist die Berücksichtigung von Innerschalenkorrelationseffekten sowie Dreifach- und Vierfachanregungen im Clusteroperator der Wellenfunktion nötig. Die Basissatzkonvergenz wird dabei zusätzlich mit Extrapolationsmethoden beschleunigt. Die quantitative Vorhersage der Bindungslängen von 17 kleinen Molekülen, aufgebaut aus Atomen der ersten Langperiode, ist so mit einer Genauigkeit von wenigen Hundertstel Pikometern möglich. Für die Schwingungsfrequenzen dieser Moleküle weist das CC-Additionsschema basierend auf den berechneten Kraftkonstanten im Vergleich zu experimentellen Ergebnissen einen mittleren absoluten Fehler von 3.5 cm-1 und eine Standardabweichung von 2.2 cm-1 auf. Darüber hinaus werden zur Unterstützung von experimentellen Untersuchungen berechnete spektroskopische Daten einiger größerer Moleküle vorgelegt. Die in dieser Arbeit vorgestellten Untersuchungen zur Isomerisierung von Dihalogensulfanen XSSX (X= F, Cl) oder die Berechnung von Struktur- und Rotations-Schwingungs-Parametern für die Moleküle CHCl2F und CHClF2 zeigen, daß bereits störungstheoretische CCSD(T)-Näherungsmethoden qualitativ gute Vorhersagen experimenteller Resultate liefern. Desweiteren werden Diskrepanzen von experimentellen und berechneten Bindungsabständen bei den Molekülen Borhydrid- und Carbenylium durch die Berücksichtigung des elektronischen Beitrages zum Trägheitsmoment beseitigt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantenchemische Untersuchungen von Atomen und Molekülen haben in den letzten Jahren durch die systematische Erweiterung der Methoden und Computerresourcen zunehmend für die Interpretation und Vorhersage experimenteller Ergebnisse an Bedeutung gewonnen. Relativistische Effekte in der Chemie werden zum Beispiel für die gelbe Farbe von Gold und den flüssigen Aggregatzustand von Quecksilber verantwortlich gemacht und müssen daher in quantenchemischen Rechnungen berücksichtigt werden. Relativistische Effekte sind bei leichten Elementen oft so klein, daß sie in vielen quantenchemischen Betrachtungen vernachlässigt werden. Dennoch sind es gerade diese Beiträge, die verbleibende Abweichungen von noch so genauen nichtrelativistischen Rechnungen von ebenso genauen experimentellen Ergebnissen ausmachen können. Relativistische Effekte können auf viele Arten in quantenchemischen Rechnungen berücksichtigt werden. Eine Möglichkeit ist die Störungstheorie. Ein derartiger Ansatz ist die Mass-velocity-Darwin-Näherung, ein anderer die Direkte Störungstheorie. Hier entspricht die relativistische Energiekorrektur erster Ordnung der ersten Ableitung der Energie nach einem relativistischen Störparameter. Für eine Bestimmung der Gleichgewichtsstruktur eines Moleküls müssen die Kräfte auf die Atomkerne bestimmt werden. Diese entsprechen einer ersten Ableitung der Gesamtenergie nach den Kernkoordinaten. Eine Einbeziehung der relativistischen Effekte auf diese Kräfte erfordert daher die gemischte zweite Ableitung der Energie nach dem relativistischen Störparameter und den Kernkoordinaten. Diese relativistischen Korrekturen wurden in dem quantenchemischen Programmpaket ACES2 implementiert. Ein Resultat dieser Arbeit ist, daß nun erstmalig eine Implementierung analytischer Gradienten für die Berechnung relativistischer Korrekturen zu Strukturparametern mit Hilfe der relativistischen Störungstheorie für den Coupled-Cluster-Ansatz bereit steht. Die Coupled-Cluster-Theorie eignet sich besonders gut für die hochgenaue Vorhersage von molekularen Eigenschaften, wie der Gleichgewichtsstruktur. Im Rahmen dieser Arbeit wurde die Basissatzabhängigkeit der relativistischen Beiträge zu Energien, Strukturparametern und harmonischen Schwingungsfrequenzen im Detail untersucht. Für die hier untersuchten Moleküle sind die relativistischen Effekte und Effekte aufgrund der Elektronenkorrelation nicht additiv, so verkürzt die Berücksichtigung relativistischer Effekte bei Hartree-Fock-Rechnungen die Bindung in den Hydrogenhalogeniden, während die Einbeziehung der Elektronenkorrelation durch CCSD(T)-Rechnungen zu einer verlängerten Bindung im Fluorwasserstoff und weniger stark ausgeprägten Korrekturen im Chlor- und Bromwasserstoff führt. Für die anderen hier untersuchten mehratomigen Moleküle findet sich kein einheitlicher Trend; dies unterstreicht die Notwendigkeit expliziter Rechnungen. Damit steht ein leistungsfähiges und vielseitiges Werkzeug für die Berechnung relativistischer Korrekturen auf verschiedenste molekulare Eigenschaften zur Verfügung, das mit modernen, systematisch verbesserbaren quantenchemischen Methoden verknüpft ist. Hiermit ist es möglich, hochgenaue Rechnungen zur Vorhersage und Interpretation von Experimenten durchzuführen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis details the development of quantum chemical methods for the accurate theoretical description of molecular systems with a complicated electronic structure. In simple cases, a single Slater determinant, in which the electrons occupy a number of energetically lowest molecular orbitals, offers a qualitatively correct model. The widely used coupled-cluster method CCSD(T) efficiently includes electron correlation effects starting from this determinant and provides reaction energies in error by only a few kJ/mol. However, the method often fails when several electronic configurations are important, as, for instance, in the course of many chemical reactions or in transition metal compounds. Internally contracted multireference coupled-cluster methods (ic-MRCC methods) cure this deficiency by using a linear combination of determinants as a reference function. Despite their theoretical elegance, the ic-MRCC equations involve thousands of terms and are therefore derived by the computer. Calculations of energy surfaces of BeH2, HF, LiF, H2O, N2 and Be3 unveil the theory's high accuracy compared to other approaches and the quality of various hierarchies of approximations. New theoretical advances include size-extensive techniques for removing linear dependencies in the ic-MRCC equations and a multireference analog of CCSD(T). Applications of the latter method to O3, Ni2O2, benzynes, C6H7NO and Cr2 underscore its potential to become a new standard method in quantum chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-cluster theory in its single-reference formulation represents one of the most successful approaches in quantum chemistry for the description of atoms and molecules. To extend the applicability of single-reference coupled-cluster theory to systems with degenerate or near-degenerate electronic configurations, multireference coupled-cluster methods have been suggested. One of the most promising formulations of multireference coupled cluster theory is the state-specific variant suggested by Mukherjee and co-workers (Mk-MRCC). Unlike other multireference coupled-cluster approaches, Mk-MRCC is a size-extensive theory and results obtained so far indicate that it has the potential to develop to a standard tool for high-accuracy quantum-chemical treatments. This work deals with developments to overcome the limitations in the applicability of the Mk-MRCC method. Therefore, an efficient Mk-MRCC algorithm has been implemented in the CFOUR program package to perform energy calculations within the singles and doubles (Mk-MRCCSD) and singles, doubles, and triples (Mk-MRCCSDT) approximations. This implementation exploits the special structure of the Mk-MRCC working equations that allows to adapt existing efficient single-reference coupled-cluster codes. The algorithm has the correct computational scaling of d*N^6 for Mk-MRCCSD and d*N^8 for Mk-MRCCSDT, where N denotes the system size and d the number of reference determinants. For the determination of molecular properties as the equilibrium geometry, the theory of analytic first derivatives of the energy for the Mk-MRCC method has been developed using a Lagrange formalism. The Mk-MRCC gradients within the CCSD and CCSDT approximation have been implemented and their applicability has been demonstrated for various compounds such as 2,6-pyridyne, the 2,6-pyridyne cation, m-benzyne, ozone and cyclobutadiene. The development of analytic gradients for Mk-MRCC offers the possibility of routinely locating minima and transition states on the potential energy surface. It can be considered as a key step towards routine investigation of multireference systems and calculation of their properties. As the full inclusion of triple excitations in Mk-MRCC energy calculations is computational demanding, a parallel implementation is presented in order to circumvent limitations due to the required execution time. The proposed scheme is based on the adaption of a highly efficient serial Mk-MRCCSDT code by parallelizing the time-determining steps. A first application to 2,6-pyridyne is presented to demonstrate the efficiency of the current implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird die Theorie der analytischen zweiten Ableitungen für die EOMIP-CCSD-Methode formuliert sowie die durchgeführte Implementierung im Quantenchemieprogramm CFOUR beschrieben. Diese Ableitungen sind von Bedeutung bei der Bestimmung statischer Polarisierbarkeiten und harmonischer Schwingungsfrequenzen und in dieser Arbeit wird die Genauigkeit des EOMIP-CCSD-Ansatzes bei der Berechnung dieser Eigenschaften für verschiedene radikalische Systeme untersucht. Des Weiteren können mit Hilfe der ersten und zweiten Ableitungen vibronische Kopplungsparameter berechnet werden, welche zur Simulation von Molekülspektren in Kombination mit dem Köppel-Domcke-Cederbaum (KDC)-Modell - in der Arbeit am Beispiel des Formyloxyl (HCO2)-Radikals demonstriert - benötigt werden.rnrnDer konzeptionell einfache EOMIP-CC-Ansatz wurde gewählt, da hier die Wellenfunktion eines Radikalsystems ausgehend von einem stabilen geschlossenschaligen Zustand durch die Entfernung eines Elektrons gebildet wird und somit die Problematik der Symmetriebrechung umgangen werden kann. Im Rahmen der Implementierung wurden neue Programmteile zur Lösung der erforderlichen Gleichungen für die gestörten EOMIP-CC-Amplituden und die gestörten Lagrange-Multiplikatoren zeta zum Quantenchemieprogramm CFOUR hinzugefügt. Die unter Verwendung des Programms bestimmten Eigenschaften werden hinsichtlich ihrer Leistungsfähigkeit im Vergleich zu etablierten Methoden wie z.B. CCSD(T) untersucht. Bei der Berechnung von Polarisierbarkeiten und harmonischen Schwingungsfrequenzen liefert die EOMIP-CCSD-Theorie meist gute Resultate, welche nur wenig von den CCSD(T)-Ergebnissen abweichen. Einzig bei der Betrachtung von Radikalen, für die die entsprechenden Anionen nicht stabil sind (z.B. NH2⁻ und CH3⁻), liefert der EOMIP-CCSD-Ansatz aufgrund methodischer Nachteile keine aussagekräftige Beschreibung. rnrnDie Ableitungen der EOMIP-CCSD-Energie lassen sich auch zur Simulation vibronischer Kopplungen innerhalb des KDC-Modells einsetzen.rnZur Kopplung verschiedener radikalischer Zustände in einem solchen Modellpotential spielen vor allem die Ableitungen von Übergangsmatrixelementen eine wichtige Rolle. Diese sogenannten Kopplungskonstanten können in der EOMIP-CC-Theorie besonders leicht definiert und berechnet werden. Bei der Betrachtung des Photoelektronenspektrums von HCO2⁻ werden zwei Alternativen untersucht: Die vertikale Bestimmung an der Gleichgewichtsgeometrie des HCO2⁻-Anions und die Ermittlung adiabatischer Kraftkonstanten an den Gleichgewichtsgeometrien des Radikals. Lediglich das adiabatische Modell liefert bei Beschränkung auf harmonische Kraftkonstanten eine qualitativ sinnvolle Beschreibung des Spektrums. Erweitert man beide Modelle um kubische und quartische Kraftkonstanten, so nähern sich diese einander an und ermöglichen eine vollständige Zuordnung des gemessenen Spektrums innerhalb der ersten 1500 cm⁻¹. Die adiabatische Darstellung erreicht dabei nahezu quantitative Genauigkeit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-Cluster-Berechnungen von Parametern derKernspin-Resonanz-Spektroskopie Dissertationsschrift von Alexander A.Auer, Mainz 2002 Im Rahmen einer Studie der Berechnung von 13C-Verschiebungenwerdendie Einfluesse von Elektronenkorrelation, Basissatz,Gleichgewichtsgeometrie sowie Schwingungs- und Rotationseffekten separat betrachtet.Dabei zeigt sich, dass dieCoupled-Cluster-Singles-Doubles-Methode mitstoerungstheoretischer Behandlung der Dreifachanregungen(CCSD(T)) mit entsprechend grossen Basissaetzen bei Beruecksichtigung derNullpunktsschwingungseffekte Ergebnisse mit ca. 1 ppm Abweichung zum Experiment liefert. Eine Analyse der Elektronenkorrelationseffekte beiCoupled-Cluster- (CC-) Berechnungen von indirekten Spin-Spin-Kopplungskonstanten zeigt, dassCC-Methoden mit Hartree-Fock-Orbitalrelaxation zur Berechnung derKopplungskonstanten ungeeignet sind. Eine Loesung ist die Verwendung unrelaxierter CC-Methoden,in denendie HF-Orbitalrelaxation aus der Berechnung der gestoertenWellenfunktion ausgeschlossen wird. Full-Configuration-Interaction-Berechnungen fuer Borhydridzeigen,dass auf CC-Singles-Doubles-Niveau (CCSD) 94% und aufCC-Singles-Doubles-Triples-Niveau (CCSDT) 99% der Korrelationseffekte beschrieben werden. Weiterhin istdie Beruecksichtigung der Nullpunktsschwingung sowie die Wahl eines ausreichend grossen Basissatzes wichtig. Auf Grundlage der vorangegangenen Studien werden im letztenTeil zwei Beispiele zur Anwendung hochgenauer Berechnungen vonNMR-Parametern vorgestellt.Im Rahmen einer Studie der Spin-Spin-Kopplungskonstanten vonCyclopentan wird eine Karplus-Beziehungzwischen den Kopplungskonstanten und der Konformation desMolekuels aufgestellt, desweiteren werden die NMR-Parameter von Methylidinphosphanuntersucht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Dissertation beinhaltet Anwendungen der Quantenchemie und methodische Entwicklungen im Bereich der "Coupled-Cluster"-Theorie zu den folgenden Themen: 1.) Die Bestimmung von Geometrieparametern in wasserstoffverbrückten Komplexen mit Pikometer-Genauigkeit durch Kopplung von NMR-Experimenten und quantenchemischen Rechnungen wird an zwei Beispielen dargelegt. 2.) Die hierin auftretenden Unterschiede in Theorie und Experiment werden diskutiert. Hierzu wurde die Schwingungsmittelung des Dipolkopplungstensors implementiert, um Nullpunkt-Effekte betrachten zu können. 3.) Ein weiterer Aspekt der Arbeit behandelt die Strukturaufklärung an diskotischen Flüssigkristallen. Die quantenchemische Modellbildung und das Zusammenspiel mit experimentellen Methoden, vor allem der Festkörper-NMR, wird vorgestellt. 4.) Innerhalb dieser Arbeit wurde mit der Parallelisierung des Quantenchemiepaketes ACESII begonnen. Die grundlegende Strategie und erste Ergebnisse werden vorgestellt. 5.) Zur Skalenreduktion des CCCSD(T)-Verfahrens durch Faktorisierung wurden verschiedene Zerlegungen des Energienenners getestet. Ein sich hieraus ergebendes Verfahren zur Berechnung der CCSD(T)-Energie wurde implementiert. 6.) Die Reaktionsaufklärung der Bildung von HSOH aus di-tert-Butyl-Sulfoxid wird vorgestellt. Dazu wurde die Thermodynamik der Reaktionsschritte mit Methoden der Quantenchemie berechnet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Themengebiete dieser Arbeit umfassen sowohl methodische Weiterentwicklungen im Rahmen der ab initio zweiter Ordnungsmethoden CC2 und ADC(2) als auch Anwendungen dieser Weiterentwick-lungen auf aktuelle Fragestellungen. Die methodischen Erweiterungen stehen dabei hauptsächlich im Zusammenhang mit Übergangsmomenten zwischen angeregten Zuständen. Durch die Implementie-rung der selbigen ist nun die Berechnung transienter Absorptionsspektren möglich. Die Anwendungen behandeln vorwiegend das Feld der organischen Halbleiter und deren photo-elektronische Eigen-schaften. Dabei spielen die bislang wenig erforschten Triplett-Excimere eine zentrale Rolle.rnDie Übergangsmomente zwischen angeregten Zuständen wurden in das Programmpaket TUR-BOMOLE implementiert. Dadurch wurde die Berechnung der Übergangsmomente zwischen Zustän-den gleicher Multiplizität (d.h. sowohl Singulett-Singulett- als auch Triplett-Triplett-Übergänge) und unterschiedlicher Multiplizität (also Singulett-Triplett-Übergänge) möglich. Als Erweiterung wurde durch ein Interface zum ORCA Programm die Berechnung von Spin-Orbit-Matrixelementen (SOMEs) implementiert. Des Weiteren kann man mit dieser Implementierung auch Übergänge in offenschaligen Systemen berechnen. Um den Speicherbedarf und die Rechenzeit möglichst gering zu halten wurde die resolution-of-the-identity (RI-) Näherung benutzt. Damit lässt sich der Speicherbedarf von O(N4) auf O(N3) reduzieren, da die mit O(N4) skalierenden Größen (z. B. die T2-Amplituden) sehr effizient aus RI-Intermediaten berechnet werden können und daher nicht abgespeichert werden müssen. Dadurch wird eine Berechnung für mittelgroße Moleküle (ca. 20-50 Atome) mit einer angemessenen Basis möglich.rnDie Genauigkeit der Übergangsmomente zwischen angeregten Zuständen wurde für einen Testsatz kleiner Moleküle sowie für ausgewählte größere organische Moleküle getestet. Dabei stellte sich her-aus, dass der Fehler der RI-Näherung sehr klein ist. Die Vorhersage der transienten Spektren mit CC2 bzw. ADC(2) birgt allerdings ein Problem, da diese Methoden solche Zustände nur sehr unzureichend beschreiben, welche hauptsächlich durch zweifach-Anregungen bezüglich der Referenzdeterminante erzeugt werden. Dies ist für die Spektren aus dem angeregten Zustand relevant, da Übergänge zu diesen Zuständen energetisch zugänglich und erlaubt sein können. Ein Beispiel dafür wird anhand eines Singulett-Singulett-Spektrums in der vorliegenden Arbeit diskutiert. Für die Übergänge zwischen Triplettzuständen ist dies allerdings weniger problematisch, da die energetisch niedrigsten Doppelan-regungen geschlossenschalig sind und daher für Tripletts nicht auftreten.rnVon besonderem Interesse für diese Arbeit ist die Bildung von Excimeren im angeregten Triplettzu-stand. Diese können aufgrund starker Wechselwirkungen zwischen den π-Elektronensystemen großer organischer Moleküle auftreten, wie sie zum Beispiel als organische Halbleiter in organischen Leucht-dioden eingesetzt werden. Dabei können die Excimere die photo-elktronischen Eigenschaften dieser Substanzen signifikant beeinflussen. Im Rahmen dieser Dissertation wurden daher zwei solcher Sys-teme untersucht, [3.3](4,4’)Biphenylophan und das Naphthalin-Dimer. Hierzu wurden die transienten Anregungsspektren aus dem ersten angeregten Triplettzustand berechnet und diese Ergebnisse für die Interpretation der experimentellen Spektren herangezogen. Aufgrund der guten Übereinstimmung zwischen den berechneten und den experimentellen Spektren konnte gezeigt werden, dass es für eine koplanare Anordnung der beiden Monomere zu einer starken Kopplung zwischen lokal angereg-ten und charge-transfer Zuständen kommt. Diese Kopplung resultiert in einer signifikanten energeti-schen Absenkung des ersten angeregten Zustandes und zu einem sehr geringen Abstand zwischen den Monomereinheiten. Dabei ist der angeregte Zustand über beide Monomere delokalisiert. Die star-ke Kopplung tritt bei einem intermolekularen Abstand ≤4 Å auf, was einem typischen Abstand in orga-nischen Halbleitern entspricht. In diesem Bereich kann man zur Berechnung dieser Systeme nicht auf die Förster-Dexter-Theorie zurückgreifen, da diese nur für den Grenzfall der schwachen Kopplung gültig ist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden Untersuchungen zum Mechanismus, der Dynamik und der Kontrolle des elektronischen Energietransfers in multichromophoren Modellsystemen durchgeführt. Als Untersuchungsmethoden wurden hauptsächlich die konfokale Einzelmolekülspektroskopie und die Quantenchemie eingesetzt. Der Aufbau des Einzelmolekülmikroskops wurde bezüglich der Anregungs- und Detektionskomponenten variiert, um die unterschiedlichen Experimente durchzuführen. Die quantenchemischen Rechnungen wurden auf Dichtefunktional- und Coupled-Cluster-Niveau durchgeführt. Die aus den Rechnungen erhaltenen zusätzlichen Informationen über experimentell zum Teil schwer zugängliche Eigenschaften der Farbstoffe unterstützten die Interpretation der experimentellen Befunde. rnIn früheren Untersuchungen der AG Basché wurden die Energietransfer-Raten von Donor-Akzeptor-Systemen gemessen, die erhebliche Abweichungen von nach der Förster-Theorie berechneten Raten zeigten. Daher war ein Ziel der vorliegenden Arbeit, diese Abweichungen zu erklären. Zu diesem Zweck wurde die Geometrie der Diaden experimentell untersucht, sowie die elektronische Kopplung zwischen den Chromophoren quantenchemisch berechnet. Die relative Orientierung der Chromophore in den Diaden wurde in einem Einzelmolekül-Experiment mit rotierender Anregungspolarisation abgefragt. Die erhaltenen Winkelverteilungen konnten schließlich eindeutig auf die Flexibilität der die Chromophore verbrückenden Oligophenyl-Einheiten zurückgeführt werden. Die Unterschiede der gemessenen Energietransfer-Raten zu den nach der Förster-Theorie ermittelten Werten konnten jedoch nicht über die molekulare Flexibilität der Systeme erklärt werden. Aufklärung über die Diskrepanzen zur Förster-Theorie ergaben die quantenchemischen Rechnungen. In Rahmen dieser Arbeit wurde zum ersten Mal die Coupled-Cluster-Theorie zur Berechnung der elektronischen Kopplung eingesetzt. Die Betrachtung der isolierten Chromophore reichte aber nicht aus, um die gemessenen Abweichungen von der Förster-Theorie zu erklären. Erst über die Berücksichtigung der molekularen Brücke konnten die gefunden Abweichungen erklärt werden. Die deutliche Verstärkung der elektronischen Kopplung ist auf die Polarisierbarkeit der Brücke zurückzuführen.rnNach diesen Betrachtungen stand die Kontrolle des Energietransfers im Fokus der weiteren Untersuchungen. In den durchgeführten Einzelmolekülexperimenten wurden die Chromophore der Donor-Akzeptor-Systeme selektiv mit zwei Laserpulsen unterschiedlicher Wellenlänge angeregt. Beim gleichzeitigen Anregen beider Chromophore wurde Singulett-Singulett-Annihilation (SSA) induziert, ein Energietransferprozess, bei dem die Anregungsenergie vom vorigen Akzeptor zum vorigen Donor übertragen wird. Da über SSA Fluoreszenzphotonen gelöscht wurden, konnte über den Abstand der Laserpulse die Fluoreszenzintensität des einzelnen Moleküls moduliert werden. Konzeptionell verwandte Einzelmolekülexperimente wurden an einem weiteren molekularen System durchgeführt, das aus einem Kern und einer Peripherie bestand. Fluoreszenzauszeiten des Gesamtsystems bei selektiver Anregung des Kerns wurden auf die Population eines Triplett-Zustandes zurückgeführt, der die Fluoreszenz der Peripherie löschte. rnAbschließend wurde der SSA-Prozess zwischen zwei gleichartigen Chromophoren untersucht. Es wurde eine Methode entwickelt, die es zum ersten Mal erlaubte, die SSA-Zeitkonstante individueller Moleküle zu bestimmen. Hierfür wurden die Daten der gemessenen Photonen-Koinzidenzhistogramme mittels eines im Rahmen dieser Arbeit hergeleiteten analytischen Zusammenhangs ausgewertet, der über Monte-Carlo-Simulationen bestätigt wurde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden experimentelle und theoretische Untersuchungen zum Phasen- und Grenzflächenverhalten von ternären Systemen des Typs Lösungsmittel/Fällungsmittel/Polymer durchgeführt. Diese Art der Mischungen ist vor allem für die Planung und Durchführung der Membranherstellung von Bedeutung, bei der die genaue Kenntnis des Phasendiagramms und der Grenzflächenspannung unabdingbar ist. Als Polymere dienten Polystyrol sowie Polydimethylsiloxan. Im Fall des Polystyrols kam Butanon-2 als Lösungsmittel zum Einsatz, wobei drei niedrigmolekulare lineare Alkohole als Fällungsmittel verwendet wurden. Für Polydimethylsiloxan eignen sich Toluol als Lösungsmittel und Ethanol als Fällungsmittel. Durch Lichtstreumessungen, Dampfdruckbestimmungen mittels Headspace-Gaschromatographie (VLE-Gleichgewichte) sowie Quellungsgleichgewichten lassen sich die thermodynamischen Eigenschaften der binären Subsysteme charakterisieren. Auf Grundlage der Flory-Huggins-Theorie kann das experimentell bestimmte Phasenverhalten (LLE-Gleichgewichte) in guter Übereinstimmung nach der Methode der Direktminimierung der Gibbs'schen Energie modelliert werden. Zieht man die Ergebnisse der Aktivitätsbestimmung von Dreikomponenten-Mischungen mit in Betracht, so ergeben sich systematische Abweichungen zwischen Experiment und Theorie. Sie können auf die Notwendigkeit ternärer Wechselwirkungsparameter zurückgeführt werden, die ebenfalls durch Modellierung zugänglich sind.Durch die aus den VLE- und LLE-Untersuchungen gewonnenen Ergebnissen kann die sog. Hump-Energie berechnet werden, die ein Maß für die Entmischungstendenz darstellt. Diese Größe eignet sich gut zur Beschreibung von Grenzflächenphänomenen mittels Skalengesetzen. Die für binäre Systeme gefundenen theoretisch fundierten Skalenparameter gelten jedoch nur teilweise. Ein neues Skalengesetz lässt erstmals eine Beschreibung über die gesamte Mischungslücke zu, wobei ein Parameter durch eine gemessene Grenzflächenspannung (zwischen Fällungsmittel/Polymer) ersetzt werden kann.