404 resultados para Ion Beam Deposition
Resumo:
在研究阶段离子束辅助制备方式对薄膜性质影响的基础上,采用电子枪蒸发及离子束辅助沉积制备了氧化铪及氧化硅单层膜,采用阶段离子束辅助沉积及全程非离子束辅助沉积制备了基频减反膜。测量了所有样品的弱吸收、残余应力和激光损伤阈值。结果发现,相对电子枪热蒸发制备的样品,离子束辅助沉积的单层膜具有大的弱吸收、低的激光损伤阈值,且张应力减小,压应力增加;阶段离子束辅助沉积制备的减反膜剩余应力变小,弱吸收稍微增加,激光损伤阈值从10.91 J/cm^2增加到18 J/cm^2。分析表明,离子束辅助沉积在引入提高样品激光损伤
Resumo:
电子枪蒸发制备了氧化铪薄膜,对氧离子束辅助和未辅助两种情况下的样品进行了折射率、吸收、激光损伤阈值等属性的测试,结果表明,氧离子束辅助沉积的样品与未辅助沉积的样品相比具有高的折射率和高的吸收,以及稍低的激光损伤阈值.经过分析发现,薄膜的激光损伤阈值是影响薄膜抗激光特性的不利因素和有利因素竞争的结果,离子束辅助沉积技术在引入结构致密等有利因素的同时,也引入了吸收增加等不利因素.
Resumo:
采用电子束直接蒸发氧化铪、无辅助电子束反应蒸发和离子束辅助反应蒸发金属铪3种沉积方式制备了单层HfO2薄膜,对样品的光学性能、结构特性以及激光损伤特性进行了研究。实验结果表明:通过反应沉积的方法可以有效减少缺陷产生并改善均匀性,施加离子辅助可以提高薄膜的折射率,在一定条件下还可以有效地降低吸收,但激光损伤阈值仍未达到直接采用氧化铪制备的水平;晶体结构方面,离子辅助条件下可以获得单斜相氧化铪薄膜,并且随着轰击能量的提高由(002)面的择优取向向(-111)面转变。
Resumo:
综述了离子束辅助沉积技术在高功率激光薄膜制备中的应用研究进展。指出该技术在制备高激光损伤阈值的薄膜中存在的问题,即出现过高的堆积密度,会给薄膜带来杂质缺陷、化学计量比缺陷、损伤缺陷、晶界缺陷,制备薄膜的残余应力存在着压应力增加的趋势,会改变薄膜的晶体结构等。并指出了该研究领域的研究方向。
Resumo:
Cubic boron nitride (c-BN) films were deposited on Si(001) substrates in an ion beam assisted deposition (IBAD) system under various conditions, and the growth parameter spaces and optical properties of c-BN films have been investigated systematically. The results indicate that suitable ion bombardment is necessary for the growth of c-BN films, and a well defined parameter space can be established by using the P/a-parameter. The refractive index of BN films keeps a constant of 1.8 for the c-BN content lower than 50%, while for c-BN films with higher cubic phase the refractive index increases with the c-BN content from 1.8 at chi(c) = 50% to 2.1 at chi(c) = 90%. Furthermore, the relationship between n and rho for BN films can be described by the Anderson-Schreiber equation, and the overlap field parameter gamma is determined to be 2.05.
Resumo:
In this article, a simple and flexible electron-beam coevaporation (EBCE) technique has been reported of fabrication of the silicon nanocrystals (Si NCs) and their application to the nonvolatile memory. For EBCE, the Si and SiOx(x=1 or 2) were used as source materials. Transmission electron microscopy images and Raman spectra measurement verified the formation of the Si NCs. The average size and area density of the Si NCs can be adjusted by increasing the Si:O weight ratio in source material, which has a great impact on the crystalline volume fraction of the deposited film and on the charge storage characteristics of the Si NCs. A memory window as large as 6.6 V under +/- 8 V sweep voltage was observed for the metal-oxide-semiconductor capacitor structure with the embedded Si NCs.
Resumo:
CeO2 thin film was fabricated by dual ion beam epitaxial technique. The violet/blue PL at room temperature and lower temperature was observed from the CeO2 thin film. After the analysis of crystal structure and valence in the compound was carried out by the XRD and XPS technique, it was inferred that the origin of CeO2 PL was due to the electrons transition from Ce4f band to O2p band and the defect level to O2p band. And these defects levels were located in the range of 1 eV around Ce4f band.
Resumo:
CeO2 thin film was fabricated by dual ion beam epitaxial technique. The phenomenon of PL violet shift at room temperature was observed, and the distance of shift was about 65 nm. After the analysis of crystal structure and valence in the compound were carried out by XRD and XPS technique, it was concluded that the PL shift was related with valence of cerium ion in the oxides. When the valence of cerium ion varied front tetravalence to trivalence, the PL peak position would move from blue region to violet region and the phenomenon of "violet shift" was observed.
Resumo:
In this paper we present a new method for measuring diffusion coefficients in liquid metals under convection-less conditions with solid/liquid-liquid/solid trilayer. The advantage of this kind of trilayer is that effects from gravity-induced convection and Marangoni-convection can be omitted, so that the diffusion coefficient is determined more accurately. The Ta/Zn-Sn/Si trilayer were prepared with a multi-target ion-beam sputtering deposition technique and annealed in an electric furnace under an argon atmosphere. The interdiffusion of liquid zinc and tin at 500 degrees degree C was investigated. The diffusion concentration profiles were determined by energy dispersive spectroscopy. The interdiffusion coefficients range from 1.0x10(-6)cm(2)/s to 2.8x10(-6)cm(2)/s, which is less than previous values measured by capillary reservoir technique under 1g-environment where various convection exist. The precise interdiffusion coefficients of liquid zinc and tin result from the removing of disturbances of various kinds of convection.
Resumo:
A novel process of room temperature ion beam sputtering deposition of vanadium oxide films and low temperature post annealing for uncooled infrared detectors was proposed in this work. VOx thin films with relatively low square resistance (70 K Omega / square) and large temperature coefficient of resistance (more than 3%/K) at room temperature were fabricated using this low temperature process which was very compatible with the process of uncooled infrared detectors based on micromachined technology. Furthermore, chemical composition and film surface have been characterized using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results showed that the main composition of the processed thin films was V2O5 and the thin films were in the process of crystallization.
Resumo:
Raman scattering measurements have been performed in diluted magnetic semiconductor Ga1-xMnxAs prepared by Mn-ion implantation, deposition, and post-annealing technique. It is found that the Raman spectrum measured from the implanted surface of the sample shows some new weak modes in addition to the GaAs-like modes which are observed from the unimplanted surface. The new vibrational modes observed are assigned to MnAs-like modes. The coupled LO-phonon plasmon mode, and Mn and As related vibrational modes caused by Mn-ion implantation, deposition, and post-annealing are also observed. Furthermore, the GaAs-like modes are found to be shifted by approximately 4 cm(-1) in the lower frequency side, compared with those observed from the unimplanted surface.
Resumo:
GaAs films made by molecular beam epitaxy with thicknesses ranging from 0.9 to 1.25-mu-m on Si have been implanted with Si ions at 1.2 MeV to dose of 1 x 10(15)/cm2. A rapid infrared thermal annealing and white light annealing were then used for recrystallization. Crystalline quality was analysed by using backscattering channeling technique with Li ion beam of 4.2 MeV. The experimental results show that energy selection is important for obtaining better and uniform recrystallized GaAs epilayers.
Resumo:
Medium energy (5-25 keV) C-13(+) ion implantation into diamond (100) to a fluence ranging from 10(16) cm(-2) to 10(18) cm(-2) was performed for the study of diamond growth via the approach of ion beam implantation. The samples were characterized with Rutherford backscattering/channelling spectroscopy, Raman spectroscopy, X-ray photoemission spectroscopy and Auger electron spectroscopy. Extended defects are formed in the cascade collision volume during bombardment at high temperatures. Carbon incorporation indeed induces a volume growth but the diamond (100) samples receiving a fluence of 4 x 10(17) to 2 x 10(18) at. cm(-2) (with a dose rate of 5 x 10(15) at. cm(-2) s(-1) at 5 to 25 keV and 800 degrees C) showed no He-ion channelling. Common to these samples is that the top surface layer of a few nanometers has a substantial amount of graphite which can be removed by chemical etching. The rest of the grown layer is polycrystalline diamond with a very high density of extended defects.
Resumo:
In this paper we present a new method for measuring diffusion coefficients in liquid metals under convection-less conditions with solid/liquid-liquid/solid trilayer. The advantage of this kind of trilayer is that effects from gravity-induced convection and Marangoni-convection can be omitted, so that the diffusion coefficient is determined more accurately. The Ta/Zn-Sn/Si trilayer were prepared with a multi-target ion-beam sputtering deposition technique and annealed in an electric furnace under an argon atmosphere. The interdiffusion of liquid zinc and tin at 500 degrees degree C was investigated. The diffusion concentration profiles were determined by energy dispersive spectroscopy. The interdiffusion coefficients range from 1.0x10(-6)cm(2)/s to 2.8x10(-6)cm(2)/s, which is less than previous values measured by capillary reservoir technique under 1g-environment where various convection exist. The precise interdiffusion coefficients of liquid zinc and tin result from the removing of disturbances of various kinds of convection.
Resumo:
We have achieved in-situ Si incorporation into cubic boron nitride (c-BN) thin films during ion beam assisted deposition. The effects of silicon incorporation on the composition, structure and electric conductivity of c-BN thin films were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrical measurements. The results suggest that the content of the cubic phase remains stable on the whole with the incorporation of Si up to a concentration of 3.3 at.%, and the higher Si concentrations lead to a gradual change from c-BN to hexagonal boron nitride. It is found that the introduced Si atoms only replace B atoms and combine with N atoms to form Si-N bonds, and no evidence of the existence of Si-B bonds is observed. The resistance of the Si-doped c-BN films gradually decreases with increasing Si concentration, and the resistivity of the c-BN film with 3.3 at.% Si is lowered by two orders of magnitude as compared to undoped samples.