276 resultados para Substrate patterning
Resumo:
The relationship between Ge content of Si1-xGex layers and growth conditions was investigated via UHV/CVD system at relative low temperature of 500℃. Si1-xGex layers were in a metastable state in this case. 10-period strained 3.0 nm- Si0.5Ge0.5/3.4 nm- Si multi quantum wells were obtained directly on Si substrate. Raman Measurement, high resolution electron microscopy and photoluminescence were used to characterize the structural and optical properties. It is found that such relative thick Si0.5Ge0.5/Si multi quantum wells are still near planar and free of dislocations, that makes it exploit applications to electrical and optical devices.
Resumo:
Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resistivity silicon (HRS) substrate. The results show that the microwave loss of a CPW on LRS is too high to be used, but it can be greatly reduced by adding a thick interlayer of silicon oxide between the CPW transmission lines and the LRS.A CPW directly on HRS shows a loss lower than 2dB/cm in the range of 0-26GHz and the process is simple,so HRS is a more suitable CPW substrate.
Resumo:
One group of SiC films are grown on silicon-on-insulator (SOI) substrates with a series of silicon-overlayer thickness. Raman scattering spectroscopy measurement clearly indicates that a systematic trend of residual stress reduction as the silicon over-layer thickness decreases for the SOI substrates. Strain relaxation in the SiC epilayer is explained by force balance approach and near coincidence lattice model.
Resumo:
GaN buffer layers (thickness ~60nm) grown on GaAs(001) by low-temperature MOCVD are investigated by X-ray diffraction pole figure measurements using synchrotron radiation in order to understand the heteroepitaxial growth features of GaN on GaAs(001) substrates. In addition to the epitaxially aligned crystallites,their corresponding twins of the first and the second order are found in the X-ray diffraction pole figures. Moreover, { 111 } q scans with χ at 55° reveal the abnormal distribution of Bragg diffractions. The extra intensity maxima in the pole fig ures shows that the process of twinning plays a dominating role during the growth process. It is suggested that the polarity of { 111 } facets emerged on (001) surface will affect the growth-twin nucleation at the initial stages of GaN growth on GaAs(001) substrates. It is proposed that twinning is prone to occurring on { 111 } B, N-terminated facets.
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入
Resumo:
Wurtzite single crystal GaN films have been grown onto a gamma-Al2O3/Si(001) substrate in a horizontal-type low pressure MOVPE system. A thin gamma-Al2O3 layer is an intermediate layer for the growth of single crystal GaN on Si although it is only an oriented polycrystal film as shown by reflection high electron diffraction. Moreover, the oxide is not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN layer as studied by transmission electron microscopy. Double crystal x-ray linewidth of (0002) peak of the 1.3 mu m sample is 54 arcmin and the films have heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature is observed by photoluminescence spectroscopy. Raman scattering does not detect any cubic phase coexistence.
Resumo:
Based on Stefan-Boltzman and Lambert theorems, the radiation energy distribution on substrate (REDS) from catalyzer with parallel filament geometry has been simulated by variation of filament and system layout in hot-wire chemical vapor deposition. The REDS uniformity is sensitive to the distance between filament and substrate d(f-s) when d(f-s) less than or equal to 4 cm. As d(f-s) > 4 cm, the REDS uniformity is independent of d(f-s) and is mainly determined by filament number and filament separation. Two-dimensional calculation shows that the REDS uniformity is limited by temperature decay at filament edges. The simulation data are in good agreement with experiments. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The Principle of optical thin film was used to calculate the feasibility of improving the light extraction efficiency of GaN/GaAs optical devices by wafer-bonding technique. The calculated results show that the light extraction efficiency of bonded samples can be improved by 2.66 times than the as-grown GaN/GaAs samples when a thin Ni layer was used as adhesive layer and Ag layer as reflective layer. Full reflectance spectrum comparison shows that reflectivity for the incident light of 459.2 nm of the bonded samples was improved by 2.4 times than the as-grown samples, which is consistent with the calculated results.
Resumo:
Diagonal self-assembled InAs quantum wire (QWR) arrays with the stacked InAs/In0.52Al0.48As structure are grown on InP substrates, which are (001)-oriented and misoriented by 6degrees towards the [100] direction. Both the molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE) techniques are employed. Transmission electron microscopy reveals that whether a diagonal InAs QWR array of the stacked InAs/InAlAs is symmetrical about the growth direction or not depends on the growth method as well as substrate orientation. Asymmetry in the diagonal MEE-grown InAs QWR array can be ascribed to the influence of surface reconstruction on upward migration of adatoms during the self-assembly of the InAs quantum wires.
Resumo:
The growth of Bi2Ti2O7 films with (111) orientation on Si(100) substrate by atmospheric pressure metal-organic chemical vapor deposition(APMOCVD) technique at 480similar to550 degreesC is presented. The films were characterized by X-ray diffraction analysis, atomic force microscopy and electron diffraction. The results show high quality Bi2Ti2O7 films with smooth shinning surface. The dielectric properties and C-V characterization of the films were studied. The dielectric constant (epsilon) and loss tangent (tgdelta) were found to be 180 and 0.01 respectively. The charge storage density was 31.9fC/mum(2). The resistivity is higher than 1x10(12) Omega. .cm under the applied voltage of 5V. The Bi2Ti2O7 films are suitable to be used as a new insulating gate material in dynamic random access memory (DRAM).
Influence of substrate orientation on In0.5Ga0.5As/GaAs quantum dots grown by molecular beam epitaxy
Resumo:
In this paper, In0.5Ga0.5As quantum dots are fabricated on GaAs (100) and (n11)A/B (n = 3, 5) substrates by molecular beam epitaxy. Atomic force microscopy shows that the quantum dots on each oriented substrate are different in size, shape and distribution. In addition, photoluminescence spectra from these quantum dots are different in emission peak position, line width and integrated intensity. Auger electron spectra demonstrate that In concentration is larger near the surface than inside quantum dots, suggesting the occurrence of surface segregation effect during the growth of InGaAs dots. The surface segregation effect is found to be related to substrate orientation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We analyze low-temperature Raman and photoluminescence spectra of MBE-grown GaN layers on sapphire. Strong and sharp Raman peaks are observed in the low frequency region. These peaks, which are enhanced by excitation in resonance with yellow luminescence transitions, are attributed to electronic transitions related to shallow donor levels in hexagonal GaN. It is proposed that a low frequency Raman peak at 11.7 meV is caused by a pseudo-local vibration mode related to defects involved in yellow luminescence transitions. The dependence of the photoluminescence spectra on temperature gives additional information about the residual impurities in these GaN layers.
Resumo:
The qualities of GaSb substrates commonly used for the preparation of III-V antimonide epilayers were studied before and after growing GaInAsSb multi-layers by MOCVD using PL, FTIR and DCXD together with the electrical properties and EPD value. The correlation between the substrate qualities and epilayer properties was briefly discussed. The good property epilayers of GaInAsSb and, then, the high preformance of 2.3 um photodetectors were achieved only using the good quality GaSb wafers as the substrates.