991 resultados para Talagrand Compact
Resumo:
Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.
Resumo:
We develop and describe continuous and discrete transforms of class functions on a compact semisimple, but not simple, Lie group G as their expansions into series of special functions that are invariant under the action of the even subgroup of the Weyl group of G. We distinguish two cases of even Weyl groups-one is the direct product of even Weyl groups of simple components of G and the second is the full even Weyl group of G. The problem is rather simple in two dimensions. It is much richer in dimensions greater than two-we describe in detail E-transforms of semisimple Lie groups of rank 3.
Resumo:
We construct five new elements of degree 6 in the nucleus of the free alternative algebra. We use the representation theory of the symmetric group to locate the elements. We use the computer algebra system ALBERT and an extension of ALBERT to express the elements in compact form and to show that these new elements are not a consequence of the known clegree-5 elements in the nucleus. We prove that these five new elements and four known elements form a basis for the subspace of nuclear elements of degree 6. Our calculations are done using modular arithmetic to save memory and time. The calculations can be done in characteristic zero or any prime greater than 6, and similar results are expected. We generated the nuclear elements using prime 103. We check our answer using five other primes.
Resumo:
We prove the semi-Riemannian bumpy metric theorem using equivariant variational genericity. The theorem states that, on a given compact manifold M, the set of semi-Riemannian metrics that admit only nondegenerate closed geodesics is generic relatively to the C(k)-topology, k=2, ..., infinity, in the set of metrics of a given index on M. A higher-order genericity Riemannian result of Klingenberg and Takens is extended to semi-Riemannian geometry.
Resumo:
Given manifolds M and N, with M compact, we study the geometrical structure of the space of embeddings of M into N, having less regularity than C(infinity) quotiented by the group of diffeomorphisms of M.
Resumo:
In this paper, we define and study a special type of trisections in a module category, namely the compact trisections which characterize quasi-directed components. We apply this notion to the study of laura algebras and we use it to define a class of algebras with predictable Auslander-Reiten components.
Resumo:
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y aS, X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelof spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelof. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense sigma-compact subspace can have arbitrary extent. It is proved that for any omega (1)-monolithic compact space X, if C (p) (X)is star countable then it is Lindelof.
Resumo:
Whenever P is a topological property, we say that a topological space is star P if whenever U is an open cover of X, there is a subspace A subset of X with property P such that X = St(A, U). We study the relationships of star P properties for P is an element of {Lindelof, sigma-compact, countable} with other Lindelof type properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Let F be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F we construct a regular Riemannian foliation (F) over cap on a compact Riemannian manifold (M) over cap and a desingularization map (rho) over cap : (M) over cap -> M that projects leaves of (F) over cap into leaves of F. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F are compact, then, for each small epsilon > 0, we can find (M) over cap and (F) over cap so that the desingularization map induces an epsilon-isometry between M/F and (M) over cap/(F) over cap. This implies in particular that the space of leaves M/F is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {((M) over cap (n)/(F) over cap (n))}.
Resumo:
We prove that the symplectic group Sp(2n, Z) and the mapping class group Mod(S) of a compact surface S satisfy the R(infinity) property. We also show that B(n)(S), the full braid group on n-strings of a surface S, satisfies the R(infinity) property in the cases where S is either the compact disk D, or the sphere S(2). This means that for any automorphism phi of G, where G is one of the above groups, the number of twisted phi-conjugacy classes is infinite.
Resumo:
Let M be a compact, connected non-orientable surface without boundary and of genus g >= 3. We investigate the pure braid groups P,(M) of M, and in particular the possible splitting of the Fadell-Neuwirth short exact sequence 1 -> P(m)(M \ {x(1), ..., x(n)}) hooked right arrow P(n+m)(M) (P*) under right arrow P(n)(M) -> 1, where m, n >= 1, and p* is the homomorphism which corresponds geometrically to forgetting the last m strings. This problem is equivalent to that of the existence of a section for the associated fibration p: F(n+m)(M) -> F(n)(M) of configuration spaces, defined by p((x(1), ..., x(n), x(n+1), ..., x(n+m))) = (x(1), ..., x(n)). We show that p and p* admit a section if and only if n = 1. Together with previous results, this completes the resolution of the splitting problem for surface pure braid groups. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Can Boutet de Monvel`s algebra on a compact manifold with boundary be obtained as the algebra Psi(0)(G) of pseudodifferential operators on some Lie groupoid G? If it could, the kernel G of the principal symbol homomorphism would be isomorphic to the groupoid C*-algebra C*(G). While the answer to the above question remains open, we exhibit in this paper a groupoid G such that C*(G) possesses an ideal I isomorphic to G. In fact, we prove first that G similar or equal to Psi circle times K with the C*-algebra Psi generated by the zero order pseudodifferential operators on the boundary and the algebra K of compact operators. As both Psi circle times K and I are extensions of C(S*Y) circle times K by K (S*Y is the co-sphere bundle over the boundary) we infer from a theorem by Voiculescu that both are isomorphic.
Resumo:
For each ideal of multilinear mappings M we explicitly construct a corresponding ideal (a)M such that multilinear forms in (a)M are exactly those which can be approximated, in the uniform norm, by multilinear forms in M. This construction is then applied to finite type, compact, weakly compact and absolutely summing multilinear mappings. It is also proved that the correspondence M bar right arrow (a)M. IS Aron-Berner stability preserving.
Resumo:
We investigate the isoperimetric problem of finding the regions of prescribed volume with minimal boundary area between two parallel horospheres in hyperbolic 3-space (the part of the boundary contained in the horospheres is not included). We reduce the problem to the study of rotationally invariant regions and obtain the possible isoperimetric solutions by studying the behavior of the profile curves of the rotational surfaces with constant mean curvature in hyperbolic 3-space. We also classify all the connected compact rotational surfaces M of constant mean curvature that are contained in the region between two horospheres, have boundary partial derivative M either empty or lying on the horospheres, and meet the horospheres perpendicularly along their boundary.
Resumo:
In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.