On the semi-Riemannian bumpy metric theorem
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
We prove the semi-Riemannian bumpy metric theorem using equivariant variational genericity. The theorem states that, on a given compact manifold M, the set of semi-Riemannian metrics that admit only nondegenerate closed geodesics is generic relatively to the C(k)-topology, k=2, ..., infinity, in the set of metrics of a given index on M. A higher-order genericity Riemannian result of Klingenberg and Takens is extended to semi-Riemannian geometry. MIUR M.I.U.R. GNSAGA of INdAM GNSAGA of INdAM Regional Junta Andalucia Regional Junta Andalucia[P09-FQM-4496] MICINN[MTM2009-10418] MICINN Fundacion Seneca[04540/GERM/06] Fundacion Seneca Excellence Groups of the Region de Murcia, Spain Excellence Groups of the Region de Murcia, Spain Regional Agency for Science and Technology Regional Agency for Science and Technology Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Capes, Brasil[BEX 1509-08-0] Fundacion Seneca, Spain[09708/IV2/08] Fundacion Seneca, Spain |
Identificador |
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, v.84, p.1-18, 2011 0024-6107 http://producao.usp.br/handle/BDPI/30672 10.1112/jlms/jdq099 |
Idioma(s) |
eng |
Publicador |
OXFORD UNIV PRESS |
Relação |
Journal of the London Mathematical Society-second Series |
Direitos |
restrictedAccess Copyright OXFORD UNIV PRESS |
Palavras-Chave | #GENERIC PROPERTIES #GEODESIC-FLOWS #Mathematics |
Tipo |
article original article publishedVersion |