Desingularization of singular Riemannian foliation
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
Let F be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F we construct a regular Riemannian foliation (F) over cap on a compact Riemannian manifold (M) over cap and a desingularization map (rho) over cap : (M) over cap -> M that projects leaves of (F) over cap into leaves of F. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F are compact, then, for each small epsilon > 0, we can find (M) over cap and (F) over cap so that the desingularization map induces an epsilon-isometry between M/F and (M) over cap/(F) over cap. This implies in particular that the space of leaves M/F is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {((M) over cap (n)/(F) over cap (n))}. CNPq-Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-Brazil Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
GEOMETRIAE DEDICATA, v.149, n.1, p.397-416, 2010 0046-5755 http://producao.usp.br/handle/BDPI/30708 10.1007/s10711-010-9489-4 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Geometriae Dedicata |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #Riemannian foliation #Isometric action #Gromov-Hausdorff limit #Desingularization #Blow-up #SPACES #Mathematics |
Tipo |
article original article publishedVersion |