On the extent of star countable spaces
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y aS, X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelof spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelof. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense sigma-compact subspace can have arbitrary extent. It is proved that for any omega (1)-monolithic compact space X, if C (p) (X)is star countable then it is Lindelof. |
Identificador |
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, v.9, n.3, p.603-615, 2011 1895-1074 http://producao.usp.br/handle/BDPI/30680 10.2478/s11533-011-0018-y |
Idioma(s) |
eng |
Publicador |
VERSITA |
Relação |
Central European Journal of Mathematics |
Direitos |
restrictedAccess Copyright VERSITA |
Palavras-Chave | #Lindelof property #Extent #Star properties #Star countable spaces #Star Lindelof spaces #Pseudocompact spaces #Countably compact spaces #Function spaces #kappa-monolithic spaces #Products of ordinals #P-spaces #Metalindelof spaces #Discrete subspaces #Open expansions #COVERING PROPERTIES #WEAK #Mathematics |
Tipo |
article original article publishedVersion |