Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani)


Autoria(s): FEL`SHTYN, Alexander; GONCALVES, Daciberg L.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We prove that the symplectic group Sp(2n, Z) and the mapping class group Mod(S) of a compact surface S satisfy the R(infinity) property. We also show that B(n)(S), the full braid group on n-strings of a surface S, satisfies the R(infinity) property in the cases where S is either the compact disk D, or the sphere S(2). This means that for any automorphism phi of G, where G is one of the above groups, the number of twisted phi-conjugacy classes is infinite.

Universite Paul Sabatier, Toulouse

Universite Paul Sabatier, Toulouse

Identificador

GEOMETRIAE DEDICATA, v.146, n.1, p.211-223, 2010

0046-5755

http://producao.usp.br/handle/BDPI/30723

10.1007/s10711-009-9434-6

http://dx.doi.org/10.1007/s10711-009-9434-6

Idioma(s)

eng

Publicador

SPRINGER

Relação

Geometriae Dedicata

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #Reidemeister number #Twisted conjugacy classes #Braids group #Mapping class group #Symplectic group #AUTOMORPHISM-GROUPS #HYPERBOLICITY #THEOREM #Mathematics
Tipo

article

original article

publishedVersion