Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani)
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We prove that the symplectic group Sp(2n, Z) and the mapping class group Mod(S) of a compact surface S satisfy the R(infinity) property. We also show that B(n)(S), the full braid group on n-strings of a surface S, satisfies the R(infinity) property in the cases where S is either the compact disk D, or the sphere S(2). This means that for any automorphism phi of G, where G is one of the above groups, the number of twisted phi-conjugacy classes is infinite. Universite Paul Sabatier, Toulouse Universite Paul Sabatier, Toulouse |
Identificador |
GEOMETRIAE DEDICATA, v.146, n.1, p.211-223, 2010 0046-5755 http://producao.usp.br/handle/BDPI/30723 10.1007/s10711-009-9434-6 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Geometriae Dedicata |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #Reidemeister number #Twisted conjugacy classes #Braids group #Mapping class group #Symplectic group #AUTOMORPHISM-GROUPS #HYPERBOLICITY #THEOREM #Mathematics |
Tipo |
article original article publishedVersion |