Generalized solutions of a nonlinear parabolic equation with generalized functions as initial data


Autoria(s): ARAGONA, Jorge; GARCIA, Antonio Ronaldo Gomes; JURIAANS, Stanley Orlando
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.

CAPES-Brazil

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Identificador

NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v.71, n.11, p.5187-5207, 2009

0362-546X

http://producao.usp.br/handle/BDPI/30747

10.1016/j.na.2009.04.070

http://dx.doi.org/10.1016/j.na.2009.04.070

Idioma(s)

eng

Publicador

PERGAMON-ELSEVIER SCIENCE LTD

Relação

Nonlinear Analysis-theory Methods & Applications

Direitos

restrictedAccess

Copyright PERGAMON-ELSEVIER SCIENCE LTD

Palavras-Chave #Colombeau algebra #Generalized function #Initial data #Parabolic equation #TOPOLOGICAL STRUCTURES #COLOMBEAU ALGEBRAS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion