Generalized solutions of a nonlinear parabolic equation with generalized functions as initial data
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved. CAPES-Brazil Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) |
Identificador |
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v.71, n.11, p.5187-5207, 2009 0362-546X http://producao.usp.br/handle/BDPI/30747 10.1016/j.na.2009.04.070 |
Idioma(s) |
eng |
Publicador |
PERGAMON-ELSEVIER SCIENCE LTD |
Relação |
Nonlinear Analysis-theory Methods & Applications |
Direitos |
restrictedAccess Copyright PERGAMON-ELSEVIER SCIENCE LTD |
Palavras-Chave | #Colombeau algebra #Generalized function #Initial data #Parabolic equation #TOPOLOGICAL STRUCTURES #COLOMBEAU ALGEBRAS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |