On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq Fapesp Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, v.16, n.2, p.333-393, 2008 1019-8385 |
Idioma(s) |
eng |
Publicador |
INT PRESS CO LTD |
Relação |
Communications in Analysis and Geometry |
Direitos |
restrictedAccess Copyright INT PRESS CO LTD |
Palavras-Chave | #COMPACT LORENTZIAN MANIFOLDS #TIME-LIKE GEODESICS #FREE LOOP SPACE #CLOSED GEODESICS #HOMOGENEOUS SPACES #STATIC SPACETIMES #FUNDAMENTAL GROUP #MASLOV INDEX #EXISTENCE #ITERATION #Mathematics |
Tipo |
article original article publishedVersion |