Countability and star covering properties
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
Whenever P is a topological property, we say that a topological space is star P if whenever U is an open cover of X, there is a subspace A subset of X with property P such that X = St(A, U). We study the relationships of star P properties for P is an element of {Lindelof, sigma-compact, countable} with other Lindelof type properties. (C) 2010 Elsevier B.V. All rights reserved. network Algebra network Algebra Topologia y Analisis del PROMEP (Mexico) Topologia y Analisis del PROMEP (Mexico)[12611243] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brasil) |
Identificador |
TOPOLOGY AND ITS APPLICATIONS, v.158, n.4, p.620-626, 2011 0166-8641 http://producao.usp.br/handle/BDPI/30692 10.1016/j.topol.2010.12.012 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Topology and Its Applications |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Star countable #Star sigma-compact #Star Lindelof #Feebly Lindelof #omega(1)-Lindelof #DCCC condition #Subspaces of omega(2)(1) #SPACES #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |