999 resultados para gallium-doped


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, The TBS glass microspheres doped with Er3+ for morphology-dependent resonances of upconversion emission were designed. The glass sample components are 25TiO(2)-27BaCO(3)-8Ba(NO3)(2)-6ZnO(2)-9CaCO(3)-5H(3)BO(3)-10SiO(2)-7water glass-3Er(2)O(3) (wt%), and the emission spectra of TBS glass and a TBS glass microsphere (about 48 mum in diameter) were measured under 633 nm excitation and discussed. The strong morphology-dependent resonances of upconversion luminescences in the microsphere were observed. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep level transient spectroscopy (DLTS) technique was used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular fiction epitaxy (MBE), Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x = 0. 0.017, 0.04 and 0.046. respectively) epilayers reveal that At doping leads to the formation of two electron traps at 0.21 and 0.39 eV below the conduction hand. 1)DLTFS results suggest that in addition to the rules of Te as a component of [lie alloy as well as isoelectronic centers, Te is also involved in the formation of all electron trip, whose energy level relative to the conduction hand decreases a, Te composition increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SiOx films with oxygen concentrations ranging 13-46 at.% were deposited by plasma enhanced chemical vapor deposition (PECVD) technique using: pure SiH4 and N2O mixture. Erbium was then implanted at an energy of 500 KeV with dose of 2x10(15) ions/cm(2). The samples were subsequently annealed in N-2 for 20 sec at temperatures of (300-950 degrees C). Room temperature (RT) photo-luminescence (PL) data were collected by Fourier Transform Infrared Spectroscopy (FTIS) with an argon laser at a wavelength of 514.5 nm and an output power from 5 to 2500 mw. The intense room-temperature luminescence was observed around 1.54 mu m. The luminescence intensity increases by 2 orders of magnitude as compared with that of Er-doped Czochralski (CZ) Si. We found that the Er3+ luminescence depends strongly on the SiOx microstructure. Our experiment also showed that the silicon grain radius decreased with increasing oxygen content and finally formed micro-crystalline silicon or nano-crystalline silicon. As a result, these silicon small particles could facilitate the energy transfer to Er3+ and thus enhanced the photoluminescence intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erbium-doped silica glasses were made by sol-gel process. Intensive photoluminescence (PL) spectra from the Er-doped silica glasses at room temperature were measured. A broadband peak at 1535 ma, corresponding to the I-4(13/2)-I-4(15/2) transition, its full width at half-maximum (FWHM) of 10 nm, and a shoulder at 1546 nm in the PL spectra were observed. At lower temperatures, main line of 1535 nm and another line of 1552 Mn instead of 1546 nm appear. So two types of luminescence centers must exist in the samples at different temperature. The intensity of main line does not decrease obviously with increasing temperature. By varying the Er ion concentration in the range of 0.2 wt% - 5wt%, the highest photoluminescence intensity was obtained at 0.2wt% erbium doped concentration. Luminescence intensity decreases with increasing erbium concentration. Cooperative upconversion was used to explain the concentration quenching of luminescence from silica glass with high erbium concentration. Extended X-ray absorption fine structure measurements were carried out. It was found that the majority of the erbium impurities in the glasses have a local structure of eight first neighbor oxygen atoms at a mean distance of 0.255 nm, which is consistent with the typical coordination structure of rare earth ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erbium-implanted silicones were treated by lamp-heating rapid thermal annealing (RTA). Two types of erbium-related photoluminescence spectra appear under different anneal temperatures. 750 degrees C annealing optimizes the luminescence intensity, which does not change with anneal time. Exciton-mediated energy transfer model in erbium-doped silicon was presented. The emission intensity is related to optical active erbium concentration, lifetime of excited Er3+ ion and spontaneous emission time. The thermal quenching of the erbium luminescence in Si is caused by thermal ionization of erbium-bound exciton complex and nonradiative energy backtransfer processes, which correspond to the activation energy of 6.6 meV and 47.4 meV respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semi-insulating InP has been grown using ferrocene as a dopant source by low pressure MOCVD. Fe doped semiinsulating InP material whose resistivity is equal to 2.0x10(8)Omega*cm and the breakdown field is Beater than 4.0x10(4)Vcm(-1) has been achieved. It is found that the magnitude of resistivity increases with growing pressure enhancement under keeping TMIn, PH3, ferrocene (Fe(C5H5)(2)) flow constant at 620 degrees C growth temperature. Moreover, the experimental results which resistivity varies with ferrocene mole fraction are given. It is estimated that active Fe doping efficiency; eta, is equal to 8.7x10(-4) at 20mbar growth pressure and 620 degrees C growth temperature by the comparison of calculated and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical band gap (E-g) of the boron (B)-doped hydrogenated nano-crystalline silicon (nc-Si:H) films fabricated using plasma enhanced chemical vapor deposition (PECVD) was investigated in this work. The transmittance of the films were measured by spectrophotometric and the E-g was evaluated utilizing three different relations for comparison, namely: alphahnu=C(hnu-E-g)(3), alphahnu=B-0(hnu-E-g)(2), alphahnu=C-0(hnu-E-g)(2). Result showed that E-g decreases with the increasing of Boron doping ratio, hydrogen concentration, and substrate's temperature (T-s), respectively. E-g raises up with rf power density (P-d) from 0.45W.cm(-2) to 0.60w.cm(-2) and then drops to the end. These can be explained for E-g decreases with disorder in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low noise field effect transistors and analogue switch integrated circuits (ICs) have been fabricated in semi-insulating gallium arsenide (SI-GaAs) wafers grown in space by direct ion-implantation. The electrical behaviors of the devices and the ICs have surpassed those fabricated in the terrestrially grown SI-GaAs wafers. The highest gain and the lowest noise of the transistors made from space-grown SI-GaAs wafers are 22.8 dB and 0.78 dB, respectively. The threshold back-gating voltage of the ICs made from space-grown SI-GaAs wafers is better than 8.5 V The con-elation between the characterizations of materials and devices is studied systematically. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have observed the transition from static to dynamic electric field domain formation induced by a transverse magnetic field and the sample temperature in a doped GaAs/AlAs superlattice. The observations can be very well explained by a general analysis of instabilities and oscillations of the sequential tunnelling current in superlattices based solely on the magnitude of the negative differential resistance region in the tunnelling characteristic of a single barrier. Both increasing magnetic field and sample temperature change the negative differential resistance and cause the transition between static and dynamic electric field domain formation. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical properties of low-temperature-deposited GaN buffer layers with different thicknesses grown by metal-organic vapor-phase epitaxy have been studied. A tentative model for the optimum thickness of buffer layer has been proposed. Heavily Si-doped GaN layers have been grown using silane as the dopant. The electron concentration of Si-doped GaN reached 1.7 x 10(20) cm(-3) with mobility 30 cm(2)/V s at room temperature. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annealing of Mg-doped GaN with Pt and Mo layers has been found to effectively improve the hole concentration of such material by more than 2 times as high as those in the same material without metal. Compared with the Ni and Mo catalysts, Pt showed good activation effect for hydrogen desorption and ohmic contact to the Ni/Au electrode. Despite the weak hydrogen desorption, Mo did not diffuse into the GaNepilayer in the annealing process, thus suppressing the carrier compensation phenomenon with respect to Ni and Pt depositions, which resulted in the high activation of Mg acceptors. For the GaN activated with the Ni, Pt, and Mo layers, the blue emission became dominant, followed by a clear peak redshift and the degradation of photoluminescence signal when compared with that of GaN without metal.