984 resultados para sm-FRET
Resumo:
Optical switching functionality is demonstrated in PCB integrated multimode passive polymer waveguides using a localised liquid-crystal cladding structure. Waveguide switching contrast of 15 dB is achieved with only 0.5 dB of on-state excess loss. © 2009 OSA.
Resumo:
Electro-optic switching in short-pitch polymer stabilized chiral nematic liquid crystals was studied and the relative contributions of flexoelectric and dielectric coupling were investigated: polymer stabilization was found to effectively suppress unwanted textural transitions of the chiral nematic liquid crystal and thereby enhance the electro-optical performance (high optical contrast for visible light, a near ideal optical hysteresis, fast electro-optic response). Test cells were studied that possessed interdigitated electrodes to electrically address the liquid crystal. Based on simulations, a well-fitted phenomenological description of the electro-optic response was derived considering both flexoelectro-optic and Kerr-effect based electro-optic response. © 2014 AIP Publishing LLC.
Resumo:
© 2013 IEEE. The world's first bulk-type fully high temperature superconducting synchronous motor (HTS-SM) was assembled and tested in our laboratory at the University of Cambridge. The fully HTS-SM was designed with 75 Y123 HTS bulks mounted on the surface of the rotor and six air core 2G HTS racetrack coils used for stator windings. We successfully applied a light fan load test for this fully HTS-SM at its operating temperature of 77 K. The detected decay of the trapped magnetic flux densities at the centre of the HTS bulks was up to 16.5% after 5 h of synchronous rotation. Due to the high current density of the HTS material, the ac stator field for the 2G HTS winding was 49.2% stronger compared with a comparable copper winding. In the meantime, we estimated that the efficiency was about 86% potentially under stable low frequency rotation at 150 r/min. The results show that the performance of this HTS motor is acceptable for practical applications.
Resumo:
The polarization dependence of the double resonant Raman scattering (2D) band in bilayer graphene (BLG) is studied as a function of the excitation laser energy. It has been known that the complex shape of the 2D band of BLG can be decomposed into four Lorentzian peaks with different Raman frequency shifts attributable to four individual scattering paths in the energy-momentum space. From our polarization dependence study, however, we reveal that each of the four different peaks is actually doubly degenerate in its scattering channels, i.e., two different scattering paths with similar Raman frequency shifts for each peak. We find theoretically that one of these two paths, ignored for a long time, has a small contribution to their scattering intensities but are critical in understanding their polarization dependences. Because of this, the maximum-to-minimum intensity ratios of the four peaks show a strong dependence on the excitation energy, unlike the case of single-layer graphene (SLG). Our findings thus reveal another interesting aspect of electron-phonon interactions in graphitic systems. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.
Resumo:
Bleached mutants of Euglena gracilis were obtained by treatment with ofloxacin (Ofl) and streptomycin (Sm) respectively. As shown by electron microscopy, the residual plastids contain prothylakoids in an Ofl mutant, and the highly developed and tightly stacked membranous structure found in cells of two Sm, mutants. Nine genes of the plastid genome were examined with PCR, showing that ribosomal protein genes and most other plastid genes were lost in all but one Sm mutant. Using differential display and RT-PCR, it was shown that chloroplast degeneration could cause changes in transcription of certain nucleus-encoded genes during heterotrophic growth in darkness.
Resumo:
An antibody phage display library against White Spot Syndrome Virus (WSSV) was constructed. After four rounds of panning against WSSV, 192 out of 480 clones displayed WSSV binding activity. One of the positive clones, designated A1, had relatively higher activity specifically binding to WSSV A1-soluble, single-chain fragment variable (scFv) antibody has an affinity constant (K-aff) of 2.02 +/- 0.42 x 10(9) M-1. Dot blot assays showed that A1-soluble scFv could detect WSSV directly from shrimp hemolymph after 24-h feeding infection by WSSV. A1 scFv has potential for the development of a cheap, simple and sensitive diagnostic kit for WSSV in the field. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The influence of well thickness on the electroluminescence (EL) of InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition is investigated. It is found that the peak wavelength of EL increases with the increase of well thickness when the latter is located in the range of 3.0-5.1 nm. The redshift is mainly attributed to the quantum confined Stark effect (QCSE). As a contrast, it is found that the EL intensity of InGaN/GaN MQWs increases with the increase of well thickness in spite of QCSE. The result of X-ray diffraction demonstrates that the interface become smoother with the increase of well thickness and suggests that the reduced interface roughness can be an important factor leading to the increase of EL intensity of InGaN/GaN MQWs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current-voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes
Resumo:
We present the growth of GaN epilayer on Si (111) substrate with a single AlGaN interlayer sandwiched between the GaN epilayer and AlN buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an AlN buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.
Resumo:
A new method to test the hole concentration of p-type GaN is proposed, which is carried out by analyzing the spectral response of p-n(+) structure GaN ultraviolet photodetector. It is shown that the spectral response of the photodetector changes considerably with reversed bias. It is found that the difference between photodetector's quantum efficiency at two wavelengths, i.e. 250 and 361 nm, varies remarkably with increasing reversed bias. According to the simulation calculation, the most characteristic change occurs at a reversed voltage under which the p-GaN layer starts to be completely depleted. Based on this effect the carrier concentration of p-GaN can be derived.
Resumo:
This paper reports that Al1-xInxN epilayers were grown on GaN template by metalorganic chemical vapor deposition with an In content of 7%-20%. X-ray diffraction results indicate that all these Al1-xInxN epilayers have a relatively low density of threading dislocations. Rutherford backscattering/channeling measurements provide the exact compositional information and show that a gradual variation in composition of the Al1-xInxN epilayer happens along the growth direction. The experimental results of optical reflection clearly show the bandgap energies of Al1-xInxN epilayers. A bowing parameter of 6.5 eV is obtained from the compositional dependence of the energy gap. The cathodoluminescence peak energy of the Al1-xInxN epilayer is much lower than its bandgap, indicating a relatively large Stokes shift in the Al1-xInxN sample.
Resumo:
InGaN/GaN multi-quantum-well-structure laser diodes with an array structure are successfully fabricated on sapphire substrates. The laser diode consists of four emitter stripes which share common electrodes on one laser chip. An 800-mu m-long cavity is formed by cleaving the substrate along the < 1 (1) over bar 00 >. orientation using laser scriber. The threshold current and voltage of the laser array diode are 2A and 10.5 V, respectively. A light output peak power of 12W under pulsed current injection at room temperature is achieved. We simulate the electric properties of GaN based laser diode in a co-planar structure and the results show that minimizing the difference of distances between the different ridges and the n-electrode and increasing the electrical conductivity of the n-type GaN are two effective ways to improve the uniformity of carrier distribution in emitter stripes. Two pairs of emitters on a chip are arranged to be located near the two n-electrode pads on the left and right sides, and the four stripe emitters can laser together. The laser diode shows two sharp peaks of light output at 408 and 409 nm above the threshold current. The full widths at half maximum for the parallel and perpendicular far field patterns are 8 degrees and 32 degrees, respectively.
Resumo:
The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector.
Resumo:
We have investigated the optical properties of thick InGaN film grown on GaN by cathodeluminescence (CL) spectroscopy. It is found that there is obvious In composition variation in both growth and lateral direction of InGaN film. The depth distribution of In composition is closely related to the strain relaxation process of InGaN film. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and the CL peak energy shifts towards red. Moreover, a rather apparent In composition fluctuation is found in the relaxed upper part of InGaN layer as confirmed by CL imaging.