990 resultados para recuperaci??n de la informaci??n


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Premios de Accesibilidad ASPAYM 2009. Premios Sociedad de la Informaci??n 2008: Mejor iniciativa para la reducci??n de la brecha digital. Menci??n de honor en los Premios Nacionales de Innovaci??n Educativa 2004

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study