1000 resultados para Función Matemática
Resumo:
Se trata la teoría de situaciones. El documento tiene dos partes. En la primera se explica de manera abstracta la Teoría de Situaciones y la manera en que el análisis de datos se le puede aplicar. En la segunda parte se muestra un ejemplo práctico de lo explicado. Se muestran para ello varias formas distintas en las que el análisis de datos puede servir a una investigación en didáctica de las matemáticas. Para llevar a cabo todo esto se aplican conceptos de la ingeniería didáctica y la Teoría de Situaciones.
Resumo:
Se describen dos modelos de organización matemática en secundaria. Se entiende por modelo de organización matemática un conjunto de pasos lógicos a realizar en la resolución de problemas matemáticos. En cada modelo se describen un conjunto de técnicas de resolución para los problemas de derivación que se resuelven en secundaria. Los modelos de organización matemática se denominan puntual y local. Se denomina modelo de organización puntual a aquel que permite resolver una tarea sencilla. Dicho de otra manera, sería la técnica empleada en la resolución de los problemas más simples. Cuando un problema es demasiado grande requiere el uso de una organización matemática local para su resolución. Una organización matemática local no es más que un conjunto de organizaciones matemáticas puntuales encadenadas para dar solución a un problema más grande. Se exponen algunos ejemplos de organizaciones matemáticas de ambos tipos que podrían implantarse en secundaria.
Resumo:
Se relatan los avances y el estado de un trabajo de investigación. Dicha investigación trata sobre el uso de los mapas conceptuales como herramienta de enseñanza de las Matemáticas. Se explica que durante el resto de la investigación se pretende establecer una serie de criterios que permitan a los profesores evaluar los mapas conceptuales de sus alumnos. También se pretende determinar cómo funcionan los procesos mentales que ocurren dentro del alumno mientras elabora un mapa conceptual. Por otra parte, se pretende fijar unos criterios para determinar cuándo un determinado área del conocimiento es suceptible de ser transformado en un mapa conceptual. Se concluye que es necesario seguir avanzando en la medida de lo posible en la investigación de los mapas conceptuales como herramienta de enseñanza.
Resumo:
Se resumen las reuniones realizadas por el grupo de didáctica de la matemática como disciplina científica. El trabajo del grupo transcurre a lo largo de dos sesiones. En la primera se presenta el trabajo 'Presentación de contenidos matemáticos mediante una estructura genérica y modular. Experiencia en el marco de la formación del profesorado'. Dicho trabajo propone una forma de estructurar la enseñanza basado en módulos independientes que se agrupan para formar contenidos adaptables a cada alumno. Queda fuera de la sesión, por indisposición de la ponente, la exposión del trabajo 'El proceso de algebrización de Organizaciones Matemáticas Escolares'. Durante la segunda sesión se exponen los trabajos 'Dos experiencias renovadoras en la enseñanza de la aritmética : Pestalozzi y la enseñanza mutua' y 'Presentación de un software de tratamiento gráfico de datos a través de su clasificación'. El primero trata sobre las distintas maneras de enseñar las matemáticas en el primer cuarto del siglo XIX. El segundo trabajo trata sobre un software para la enseñanza de las matemáticas basado en las representaciones visuales de los elementos. La exposición de todos los trabajos es seguida de sus correspondientes debates.
Resumo:
Se presentan varias cuestiones que giran en torno a las dificultades que existen para establecer criterios con los que evaluar la calidad del aprendizaje y conocimiento de las Matemáticas. En primer lugar, se exponen las dificultades que existen en todo el ámbito de la Didáctica de las Matemáticas para establecer criterios de calidad. También se reflexiona sobre las dificultades relativas al ámbito socio-académico de la educación. Por último, se presentan algunas tareas previas al establecimiento de criterios de calidad que en el momento de la reflexión se encuentran pendientes.
Resumo:
Se indaga la producción existente en torno a las tesis doctorales de Educación Matemética defendidas en las universidades españolas durante un lapso de 37 años (1965-2002). Comenta hitos relevantes en la evolución de este campo de indigación , explora patrones cienciométricos de crecimiento y trata de predecir tendencias futuras de desarrollo.
Resumo:
Se explica el funcionamiento de los nuevos títulos europeos de educación superior. El documento describe cómo se está desarrollando el conocido como 'plan bolognia'. Dicho plan pretende implantar un sistema común de enseñanza superior en toda europa. El título principal que se podrá obtener es el grado. Un grado durará 4 años, no habiendo lugar para licenciaturas, diplomaturas, ingenierías o ingenierías técnicas. Se trata de adelantar la manera en que esto afectará a la enseñanza superior de las matemáticas.
Resumo:
Se redescubre la historia de las matemáticas desde el punto de vista de la historia de la didáctica de las matemáticas. A través de clásicos como Descartes, se revisan las maneras de enseñar matemáticas que ha habido a través de la historia. Por lo tanto, se utiliza la historia de las matemáticas y la manera en la que han sido explicadas para tratar de encontrar mejoras en el sistema educativo actual.
Resumo:
Se presenta una propuesta de investigación, en la que se aplica la teoría de las cuestiones semióticas (TFS), mediante la cual se busca describir, explicar e identificar factores condicionantes de la enseñanza-aprendizaje del límite de una función en un contexto institucional fijado. Se explican los precedentes en investigaciones del mismo campo. También se realiza una descripción del marco teórico usado en relación a la teoría de las cuestiones semióticas.
Resumo:
Se aportan aspectos parciales de una investigación encaminada a describir la evolución de las concepciones y creencias de los futuros profesores de matemáticas de secundaria al cursar una asignatura de Didáctica de la Matemática. Dicha investigación explora las concepciones y creencias de los estudiantes para profesor mediante un cuestionario abierto que se aplica al inicio y al final de la asignatura. A través de un análisis de contenido se clasifican las respuestas para interpretar la evolución de los sujetos en función de la cantidad y calidad de las respuestas.
Resumo:
Se analizan los recursos, heurísticos y estrategias de control que utilizan los alumnos al resolver problemas matemáticos. Se realizaron pruebas a alumnos de 12 y 14 años. Se observa que no existen diferencias notables entre las respuestas dadas por los alumnos en función de su edad. Como consecuencia de ello, se sugiere que sería importante reflexionar sobre la utilidad de los conocimientos adquiridos por los estudiantes.
Resumo:
Se investiga la forma en que estudiantes universitarios de niveles avanzados hacen uso de recursos visuales para determinar, anticipadamente, convergencia de funciones iteradas en el marco de una particular interpretación del teorema del punto fijo. Se parte del supuesto de que la visualización es una forma de desarrollar el pensamiento matemático. De esa manera el objeto didáctico radica en proporcionar al estudiante un medio para dirigirlo hacia el significado de convergencia a partir de situaciones en las que se puede definir el valor de un punto de una sucesión como una función del valor anterior. En general se pretende favorecer las acciones de enseñanza para generar aprendizajes más significativos.
Resumo:
Se examinan las concepciones de dos profesores de educación secundaria sobre la demostración matemática y sus funciones. Se recogen los datos a través de entrevistas relacionadas con aspectos de la demostración. Los profesores reconocen la variedad de las funciones de la demostración pero tienen puntos de vista limitados sobre su naturaleza y una inadecuada comprensión de lo que constituye una demostración matemática.
Resumo:
Se analiza la manera en que se realizan las tesis doctorales en educación matemática en España. Se utiliza la metodología ARIMA (Auto-Regressive Integrated Moving Average) para realizar el análisis de manera diacrónica sobre datos longitudinales. Se hace incapié en la importancia de la metodología usada y sus ventajas frente a las metodologías tradicionalmente usadas en análisis diacrónicos. Se exponen las cuatro fases de la metodología ARIMA, correspondientes a la identificación del proceso, la estimación de cambio en el proceso, la validación del mismo y la predicción de sus consecuencias.
Resumo:
Se describe un seminario sobre investigación en educación matemática. Dicho seminario pretende revisar, organizar y sintetizar la información dispoble sobre el tema. Con esto los asistentes pretenden combatir la polisemia presente en los trabajos de investigación y que dificulta seriamente la comprensión de los conceptos subyacentes. Para ello se desarrollan tres enfoques. El primero consiste en ver el Análisis Didáctico como un instrumento para el análisis curricular. En el segundo el Análisis Didáctico es una metodología de investigación y en el último el Análisis Didáctico se utiliza como herramienta para la formación de los profesores.