970 resultados para PERTURBATION EXPANSION
Resumo:
In der vorliegenden Dissertation werden zwei verschiedene Aspekte des Sektors ungerader innerer Parität der mesonischen chiralen Störungstheorie (mesonische ChPT) untersucht. Als erstes wird die Ein-Schleifen-Renormierung des führenden Terms, der sog. Wess-Zumino-Witten-Wirkung, durchgeführt. Dazu muß zunächst der gesamte Ein-Schleifen-Anteil der Theorie mittels Sattelpunkt-Methode extrahiert werden. Im Anschluß isoliert man alle singulären Ein-Schleifen-Strukturen im Rahmen der Heat-Kernel-Technik. Zu guter Letzt müssen diese divergenten Anteile absorbiert werden. Dazu benötigt man eine allgemeinste anomale Lagrange-Dichte der Ordnung O(p^6), welche systematisch entwickelt wird. Erweitert man die chirale Gruppe SU(n)_L x SU(n)_R auf SU(n)_L x SU(n)_R x U(1)_V, so kommen zusätzliche Monome ins Spiel. Die renormierten Koeffizienten dieser Lagrange-Dichte, die Niederenergiekonstanten (LECs), sind zunächst freie Parameter der Theorie, die individuell fixiert werden müssen. Unter Betrachtung eines komplementären vektormesonischen Modells können die Amplituden geeigneter Prozesse bestimmt und durch Vergleich mit den Ergebnissen der mesonischen ChPT eine numerische Abschätzung einiger LECs vorgenommen werden. Im zweiten Teil wird eine konsistente Ein-Schleifen-Rechnung für den anomalen Prozeß (virtuelles) Photon + geladenes Kaon -> geladenes Kaon + neutrales Pion durchgeführt. Zur Kontrolle unserer Resultate wird eine bereits vorhandene Rechnung zur Reaktion (virtuelles) Photon + geladenes Pion -> geladenes Pion + neutrales Pion reproduziert. Unter Einbeziehung der abgeschätzten Werte der jeweiligen LECs können die zugehörigen hadronischen Strukturfunktionen numerisch bestimmt und diskutiert werden.
Resumo:
Die Berechnung von experimentell überprüfbaren Vorhersagen aus dem Standardmodell mit Hilfe störungstheoretischer Methoden ist schwierig. Die Herausforderungen liegen in der Berechnung immer komplizierterer Feynman-Integrale und dem zunehmenden Umfang der Rechnungen für Streuprozesse mit vielen Teilchen. Neue mathematische Methoden müssen daher entwickelt und die zunehmende Komplexität durch eine Automatisierung der Berechnungen gezähmt werden. In Kapitel 2 wird eine kurze Einführung in diese Thematik gegeben. Die nachfolgenden Kapitel sind dann einzelnen Beiträgen zur Lösung dieser Probleme gewidmet. In Kapitel 3 stellen wir ein Projekt vor, das für die Analysen der LHC-Daten wichtig sein wird. Ziel des Projekts ist die Berechnung von Einschleifen-Korrekturen zu Prozessen mit vielen Teilchen im Endzustand. Das numerische Verfahren wird dargestellt und erklärt. Es verwendet Helizitätsspinoren und darauf aufbauend eine neue Tensorreduktionsmethode, die Probleme mit inversen Gram-Determinanten weitgehend vermeidet. Es wurde ein Computerprogramm entwickelt, das die Berechnungen automatisiert ausführen kann. Die Implementierung wird beschrieben und Details über die Optimierung und Verifizierung präsentiert. Mit analytischen Methoden beschäftigt sich das vierte Kapitel. Darin wird das xloopsnosp-Projekt vorgestellt, das verschiedene Feynman-Integrale mit beliebigen Massen und Impulskonfigurationen analytisch berechnen kann. Die wesentlichen mathematischen Methoden, die xloops zur Lösung der Integrale verwendet, werden erklärt. Zwei Ideen für neue Berechnungsverfahren werden präsentiert, die sich mit diesen Methoden realisieren lassen. Das ist zum einen die einheitliche Berechnung von Einschleifen-N-Punkt-Integralen, und zum anderen die automatisierte Reihenentwicklung von Integrallösungen in höhere Potenzen des dimensionalen Regularisierungsparameters $epsilon$. Zum letzteren Verfahren werden erste Ergebnisse vorgestellt. Die Nützlichkeit der automatisierten Reihenentwicklung aus Kapitel 4 hängt von der numerischen Auswertbarkeit der Entwicklungskoeffizienten ab. Die Koeffizienten sind im allgemeinen Multiple Polylogarithmen. In Kapitel 5 wird ein Verfahren für deren numerische Auswertung vorgestellt. Dieses neue Verfahren für Multiple Polylogarithmen wurde zusammen mit bekannten Verfahren für andere Polylogarithmus-Funktionen als Bestandteil der CC-Bibliothek ginac implementiert.
Resumo:
In this thesis we consider three different models for strongly correlated electrons, namely a multi-band Hubbard model as well as the spinless Falicov-Kimball model, both with a semi-elliptical density of states in the limit of infinite dimensions d, and the attractive Hubbard model on a square lattice in d=2.
In the first part, we study a two-band Hubbard model with unequal bandwidths and anisotropic Hund's rule coupling (J_z-model) in the limit of infinite dimensions within the dynamical mean-field theory (DMFT). Here, the DMFT impurity problem is solved with the use of quantum Monte Carlo (QMC) simulations. Our main result is that the J_z-model describes the occurrence of an orbital-selective Mott transition (OSMT), in contrast to earlier findings. We investigate the model with a high-precision DMFT algorithm, which was developed as part of this thesis and which supplements QMC with a high-frequency expansion of the self-energy.
The main advantage of this scheme is the extraordinary accuracy of the numerical solutions, which can be obtained already with moderate computational effort, so that studies of multi-orbital systems within the DMFT+QMC are strongly improved. We also found that a suitably defined
Falicov-Kimball (FK) model exhibits an OSMT, revealing the close connection of the Falicov-Kimball physics to the J_z-model in the OSM phase.
In the second part of this thesis we study the attractive Hubbard model in two spatial dimensions within second-order self-consistent perturbation theory.
This model is considered on a square lattice at finite doping and at low temperatures. Our main result is that the predictions of first-order perturbation theory (Hartree-Fock approximation) are renormalized by a factor of the order of unity even at arbitrarily weak interaction (U->0). The renormalization factor q can be evaluated as a function of the filling n for 0
Resumo:
The quark condensate is a fundamental free parameter of Chiral Perturbation Theory ($chi PT$), since it determines the relative size of the mass and momentum terms in the power expansion. In order to confirm or contradict the assumption of a large quark condensate, on which $chi PT$ is based, experimental tests are needed. In particular, the $S$-wave $pipi$ scattering lengths $a_0^0$ and $a_0^2$ can be predicted precisely within $chi PT$ as a function of this parameter and can be measured very cleanly in the decay $K^{pm} to pi^{+} pi^{-} e^{pm} stackrel{mbox{tiny(---)}}{nu_e}$ ($K_{e4}$). About one third of the data collected in 2003 and 2004 by the NA48/2 experiment were analysed and 342,859 $K_{e4}$ candidates were selected. The background contamination in the sample could be reduced down to 0.3% and it could be estimated directly from the data, by selecting events with the same signature as $K_{e4}$, but requiring for the electron the opposite charge with respect to the kaon, the so-called ``wrong sign'' events. This is a clean background sample, since the kaon decay with $Delta S=-Delta Q$, that would be the only source of signal, can only take place through two weak decays and is therefore strongly suppressed. The Cabibbo-Maksymowicz variables, used to describe the kinematics of the decay, were computed under the assumption of a fixed kaon momentum of 60 GeV/$c$ along the $z$ axis, so that the neutrino momentum could be obtained without ambiguity. The measurement of the form factors and of the $pipi$ scattering length $a_0^0$ was performed in a single step by comparing the five-dimensional distributions of data and MC in the kinematic variables. The MC distributions were corrected in order to properly take into account the trigger and selection efficiencies of the data and the background contamination. The following parameter values were obtained from a binned maximum likelihood fit, where $a_0^2$ was expressed as a function of $a_0^0$ according to the prediction of chiral perturbation theory: f'_s/f_s = 0.133+- 0.013(stat)+- 0.026(syst) f''_s/f_s = -0.041+- 0.013(stat)+- 0.020(syst) f_e/f_s = 0.221+- 0.051(stat)+- 0.105(syst) f'_e/f_s = -0.459+- 0.170(stat)+- 0.316(syst) tilde{f_p}/f_s = -0.112+- 0.013(stat)+- 0.023(syst) g_p/f_s = 0.892+- 0.012(stat)+- 0.025(syst) g'_p/f_s = 0.114+- 0.015(stat)+- 0.022(syst) h_p/f_s = -0.380+- 0.028(stat)+- 0.050(syst) a_0^0 = 0.246+- 0.009(stat)+- 0.012(syst)}+- 0.002(theor), where the statistical uncertainty only includes the effect of the data statistics and the theoretical uncertainty is due to the width of the allowed band for $a_0^2$.
Resumo:
This thesis is concerned with calculations in manifestly Lorentz-invariant baryon chiral perturbation theory beyond order D=4. We investigate two different methods. The first approach consists of the inclusion of additional particles besides pions and nucleons as explicit degrees of freedom. This results in the resummation of an infinite number of higher-order terms which contribute to higher-order low-energy constants in the standard formulation. In this thesis the nucleon axial, induced pseudoscalar, and pion-nucleon form factors are investigated. They are first calculated in the standard approach up to order D=4. Next, the inclusion of the axial-vector meson a_1(1260) is considered. We find three diagrams with an axial-vector meson which are relevant to the form factors. Due to the applied renormalization scheme, however, the contributions of the two loop diagrams vanish and only a tree diagram contributes explicitly. The appearing coupling constant is fitted to experimental data of the axial form factor. The inclusion of the axial-vector meson results in an improved description of the axial form factor for higher values of momentum transfer. The contributions to the induced pseudoscalar form factor, however, are negligible for the considered momentum transfer, and the axial-vector meson does not contribute to the pion-nucleon form factor. The second method consists in the explicit calculation of higher-order diagrams. This thesis describes the applied renormalization scheme and shows that all symmetries and the power counting are preserved. As an application we determine the nucleon mass up to order D=6 which includes the evaluation of two-loop diagrams. This is the first complete calculation in manifestly Lorentz-invariant baryon chiral perturbation theory at the two-loop level. The numerical contributions of the terms of order D=5 and D=6 are estimated, and we investigate their pion-mass dependence. Furthermore, the higher-order terms of the nucleon sigma term are determined with the help of the Feynman-Hellmann theorem.
Resumo:
Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.
Resumo:
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.
Resumo:
This study deals with the internationalization behavior of a new and specific type of e-business company, namely the network managing e-business company (NM-EBC). The business model of such e-business companies is based on providing a platform and applications for users to connect and interact, on gathering and channeling the inputs provided by the users, and on organizing and managing the cross-relationships of the various participants. Examples are online communities, matching platforms, and portals. Since NM-EBCs internationalize by replicating their business model in a foreign market and by building up and managing a network of users, who provide input themselves and interact with each other, they have to convince users in foreign markets to join the network and hence to adopt their platform. We draw upon Rogers’ Diffusion of Innovations Theory and Network Theory to explain the internationalization behavior of NM-EBCs. These two theories originate from neighboring disciplines and have not yet been used to explain the internationalization of firms. We combine both theories and formulate hypotheses about which strategies NM-EBCs may choose to expand abroad. To test the applicability of our theory and to gain rich data about the internationalization behavior of these firms, we carried out multiple case studies with internationally active Germany-based NM-EBCs.
Resumo:
Relativistic effects need to be considered in quantum-chemical calculations on systems including heavy elements or when aiming at high accuracy for molecules containing only lighter elements. In the latter case, consideration of relativistic effects via perturbation theory is an attractive option. Among the available techniques, Direct Perturbation Theory (DPT) in its lowest order (DPT2) has become a standard tool for the calculation of relativistic corrections to energies and properties.In this work, the DPT treatment is extended to the next order (DPT4). It is demonstrated that the DPT4 correction can be obtained as a second derivative of the energy with respect to the relativistic perturbation parameter. Accordingly, differentiation of a suitable Lagrangian, thereby taking into account all constraints on the wave function, provides analytic expressions for the fourth-order energy corrections. The latter have been implemented at the Hartree-Fock level and within second-order Møller-Plesset perturbaton theory using standard analytic second-derivative techniques into the CFOUR program package. For closed-shell systems, the DPT4 corrections consist of higher-order scalar-relativistic effects as well as spin-orbit corrections with the latter appearing here for the first time in the DPT series.Relativistic corrections are reported for energies as well as for first-order electrical properties and compared to results from rigorous four-component benchmark calculations in order to judge the accuracy and convergence of the DPT expansion for both the scalar-relativistic as well as the spin-orbit contributions. Additionally, the importance of relativistic effects to the bromine and iodine quadrupole-coupling tensors is investigated in a joint experimental and theoretical study concerning the rotational spectra of CH2BrF, CHBrF2, and CH2FI.
Resumo:
Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.
Resumo:
Der erste Teil der vorliegenden Dissertation befasst sich mit der Untersuchung der perturbativen Unitarität im Komplexe-Masse-Renormierungsschema (CMS). Zu diesem Zweck wird eine Methode zur Berechnung der Imaginärteile von Einschleifenintegralen mit komplexen Massenparametern vorgestellt, die im Grenzfall stabiler Teilchen auf die herkömmlichen Cutkosky-Formeln führt. Anhand einer Modell-Lagrangedichte für die Wechselwirkung eines schweren Vektorbosons mit einem leichten Fermion wird demonstriert, dass durch Anwendung des CMS die Unitarität der zugrunde liegenden S-Matrix im störungstheoretischen Sinne erfüllt bleibt, sofern die renormierte Kopplungskonstante reell gewählt wird. Der zweite Teil der Arbeit beschäftigt sich mit verschiedenen Anwendungen des CMS in chiraler effektiver Feldtheorie (EFT). Im Einzelnen werden Masse und Breite der Deltaresonanz, die elastischen elektromagnetischen Formfaktoren der Roperresonanz, die elektromagnetischen Formfaktoren des Übergangs vom Nukleon zur Roperresonanz sowie Pion-Nukleon-Streuung und Photo- und Elektropionproduktion für Schwerpunktsenergien im Bereich der Roperresonanz berechnet. Die Wahl passender Renormierungsbedingungen ermöglicht das Aufstellen eines konsistenten chiralen Zählschemas für EFT in Anwesenheit verschiedener resonanter Freiheitsgrade, so dass die aufgeführten Prozesse in Form einer systematischen Entwicklung nach kleinen Parametern untersucht werden können. Die hier erzielten Resultate können für Extrapolationen von entsprechenden Gitter-QCD-Simulationen zum physikalischen Wert der Pionmasse genutzt werden. Deshalb wird neben der Abhängigkeit der Formfaktoren vom quadrierten Impulsübertrag auch die Pionmassenabhängigkeit des magnetischen Moments und der elektromagnetischen Radien der Roperresonanz untersucht. Im Rahmen der Pion-Nukleon-Streuung und der Photo- und Elektropionproduktion werden eine Partialwellenanalyse und eine Multipolzerlegung durchgeführt, wobei die P11-Partialwelle sowie die Multipole M1- und S1- mittels nichtlinearer Regression an empirische Daten angepasst werden.
Resumo:
Lo scopo di questa tesi è studiare l'espansione dinamica di due fermioni interagenti in una catena unidimensionale cercando di definire il ruolo degli stati legati durante l'evoluzione temporale del sistema. Lo studio di questo modello viene effettuato a livello analitico tramite la tecnica del Bethe ansatz, che ci fornisce autovalori ed autovettori dell'hamiltoniana, e se ne valutano le proprietà statiche. Particolare attenzione è stata dedicata alle caratteristiche dello spettro al variare dell'interazione tra le due particelle e alle caratteristiche degli autostati. Dalla risoluzione dell'equazione di Bethe vengono ricercate le soluzioni che danno luogo a stati legati delle due particelle e se ne valuta lo spettro energetico in funzione del momento del centro di massa. Si è studiato inoltre l'andamento del numero delle soluzioni, in particolare delle soluzioni che danno luogo ad uno stato legato, al variare della lunghezza della catena e del parametro di interazione. La valutazione delle proprietà dinamiche del modello è stata effettuata tramite l'utilizzo dell'algoritmo t-DMRG (time dependent - Density Matrix Renormalization Group). Questo metodo numerico, che si basa sulla decimazione dello spazio di Hilbert, ci permette di avere accesso a quantità che caratterizzano la dinamica quali la densità e la velocità di espansione. Da queste sono stati estratti i proli dinamici della densità e della velocità di espansione al variare del valore del parametro di interazione.
Resumo:
In der vorliegenden Arbeit wird die Variation abgeschlossener Unterräume eines Hilbertraumes untersucht, die mit isolierten Komponenten der Spektren von selbstadjungierten Operatoren unter beschränkten additiven Störungen assoziiert sind. Von besonderem Interesse ist hierbei die am wenigsten restriktive Bedingung an die Norm der Störung, die sicherstellt, dass die Differenz der zugehörigen orthogonalen Projektionen eine strikte Normkontraktion darstellt. Es wird ein Überblick über die bisher erzielten Resultate gegeben. Basierend auf einem Iterationsansatz wird eine allgemeine Schranke an die Variation der Unterräume für Störungen erzielt, die glatt von einem reellen Parameter abhängen. Durch Einführung eines Kopplungsparameters wird das Ergebnis auf den Fall additiver Störungen angewendet. Auf diese Weise werden zuvor bekannte Ergebnisse verbessert. Im Falle von additiven Störungen werden die Schranken an die Variation der Unterräume durch ein Optimierungsverfahren für die Stützstellen im Iterationsansatz weiter verschärft. Die zugehörigen Ergebnisse sind die besten, die bis zum jetzigen Zeitpunkt erzielt wurden.
Resumo:
We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces. For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations. For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion. We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).
Resumo:
Widespread central hypersensitivity is present in chronic pain and contributes to pain and disability. According to animal studies, expansion of receptive fields of spinal cord neurons is involved in central hypersensitivity. We recently developed a method to quantify nociceptive receptive fields in humans using spinal withdrawal reflexes. Here we hypothesized that patients with chronic pelvic pain display enlarged reflex receptive fields. Secondary endpoints were subjective pain thresholds and nociceptive withdrawal reflex thresholds after single and repeated (temporal summation) electrical stimulation. 20 patients and 25 pain-free subjects were tested. Electrical stimuli were applied to 10 sites on the foot sole for evoking reflexes in the tibialis anterior muscle. The reflex receptive field was defined as the area of the foot (fraction of the foot sole) from which a muscle contraction was evoked. For the secondary endpoints, the stimuli were applied to the cutaneous innervation area of the sural nerve. Medians (25-75 percentiles) of fraction of the foot sole in patients and controls were 0.48 (0.38-0.54) and 0.33 (0.27-0.39), respectively (P=0.008). Pain and reflex thresholds after sural nerve stimulation were significantly lower in patients than in controls (P<0.001 for all measurements). This study provides for the first time evidence for widespread expansion of reflex receptive fields in chronic pain patients. It thereby identifies a mechanism involved in central hypersensitivity in human chronic pain. Reverting the expansion of nociceptive receptive fields and exploring the prognostic meaning of this phenomenon may become future targets of clinical research.