982 resultados para Chemical-Vapor-Deposition
Resumo:
Epitaxial wurtzite InN thin films have been grown by metal-organic chemical vapor deposition on (1 1 1) SrTiO3 (STO) substrates. Interestingly, twin domain epitaxy induced by the surface reconstruction of STO is observed with the in-plane orientation relationships of [(1) over bar 1 0 0]InN parallel to [<(1)over bar > 1 0]STO and [2 <(1 1)over bar > 0]InN parallel to[<(1)over bar > 1 0]STO, which is helpful to release the strain. The InN films on STO substrates exhibit a strong photoluminescence emission around 0.78 eV. Particularly, using STO substrates opens up a possibility to integrate InN with the functional oxides. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
InGaN/GaN heterostructures have been deposited onto (0 0 0 1) sapphire by our home-made low pressure MOVPE with different growth parameters. It has been noted that the indium incorporation depends by a complex way on a number of factors. In this work, the effect of substrate temperature, trimethylindium input flow and V/III ratio on the indium incorporation has been investigated. Finally, by optimizing the growth parameters, we made a series of single-phase InGaN samples with indium content from 10% up to 45%.
Resumo:
The magnetotransport properties of a nominally undoped InGaN thin film grown by metal-organic chemical vapor deposition were investigated. Resistivity was measured under a magnetic field up to 5 T over the temperature range of 3 to 298 K. The film exhibits a negative magnetoresistance at low temperatures. Its magnitude decreases with increasing temperature, and turns to be positive for temperatures above 100 K. The negative component was described by a model proposed by Khosla and Fischer for spin scattering of carriers in an impurity band. The positive part was attributed to the effect of Lorentz force on the carrier motion. Agreement between the model and the data is presented.
Resumo:
InN films with electron concentration ranging from n similar to 10(17) to 10(20) cm(-3) grown by metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were investigated by variable-temperature photoluminescence and absorption measurements. The energy positions of absorption edge as well as photoluminescence peak of these InN samples with electron concentration above 10(18) cm(-3) show a distinct S-shape temperature dependence. With a model of potential fluctuations caused by electron-impurity interactions, the behavior can be quantitatively explained in terms of exciton freeze-out in local potential minima at sufficiently low temperatures, followed by thermal redistribution of the localized excitons when the band gap shrinks with increasing temperature. The exciton localization energy sigma (loc) is found to follow the n (5/12) power relation, which testifies to the observed strong localization effects in InN with high electron concentrations.
Resumo:
Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li [Appl. Phys. Lett. 91, 232115 (2007)].
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset of the ZnO/BaTiO3 heterojunction grown by metal-organic chemical vapor deposition. The valence band offset (VBO) is determined to be 0.48 +/- 0.09 eV, and the conduction band offset (CBO) is deduced to be about 0.75 eV using the band gap of 3.1 eV for bulk BaTiO3. It indicates that a type-II band alignment forms at the interface, in which the valence and conduction bands of ZnO are concomitantly higher than those of BaTiO3. The accurate determination of VBO and CBO is important for use of semiconductor/ferroelectric heterojunction multifunctional devices.
Resumo:
We report on the utilization of localized surface plasmon resonance (LSPR) of Ag nanoparticles to tailor the optical properties Of VO2 thin film. Interaction of nano-Ag with incident light yields a salient absorption band in the visible-near IR region and modifies the spectrum Of VO2 locally. The wavelength of modification occurs in a limited spectral region rather than affects the full spectrum. The wavelength of modification shows a strong dependence on the metal nanoparticle size and shifts toward the red as the particle size or the mass thickness of nano-Ag increases. Also, we found that the wavelength can be shifted into the IR further by introducing a thin layer of TiO2 onto the nano-Ag. Interestingly, with the help of LSPR effects the VO2 film exhibits an anomalous thermochromic behavior in the modification wavelength region, which may be useful in optical switching applications.
Resumo:
银纳米晶体掺杂的高非线性石英光纤的全光转换应用
Resumo:
Ge-on-silicon-on-insulator p-i-n photodetectors were fabricated using an ultralow-temperature Ge buffer by ultrahigh-vacuum chemical vapor deposition. For a detector of 70-mu m diameter, the 1-dB small-signal compression power was about 110.5 mW. The 3-dB bandwidth at 3-V reverse bias was 13.4 GHz.
Resumo:
We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The room-temperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efficiency of multiple quantum well (MQW), respectively.
Resumo:
The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.
Resumo:
Unintentionally doped GaN epilayers are grown by the metalorganic chemical vapor deposition (MOCVD). Photovoltaic (PV) spectroscopy shows that there appears an abnormal photoabsorption in some undoped GaN films with high resistance. The peak energy of the absorption spectrum is smaller than the intrinsic energy band gap of GaN. This phenomenon may be related to exciton absorption. Then metal-semiconductor-metal (MSM) Schottky photodetectors are fabricated on these high resistance epilayers. The photo spectrum responses are different when the light individually irradiates each of the two electrodes with the photodetector which are differently biased. When the excitation light irradiates around the reverse biased Schottky junction, the responsivity is almost one order of magnitude larger than that around the forward biased junction. Furthermore, when the excitation light irradiates the reverse biased Schottky junction, the peak energy of the spectrum has a prominent red-shift compared with the peak energy of the spectrum measured with the excitation light irradiating the forward biased Schottky junction. The shift value is about 28 meV, and it is found to be insensitive to temperature. According to the analyses of the distribution of the electric field within the MSM device and the different dependences of the response on the electric field intensity between the free carriers and excitons, a reliable explanation for the different response among various areas is proposed.
Resumo:
GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.
Resumo:
This paper investigates the effects of the diphasic structure on the optoelectronic properties of hydrogenated microcrystalline silicon (mu c-Si:H) films prepared in a triode three-chamber plasma-enhanced chemical vapor deposition (PECVD) system. The influences of boron-compensation doping on the dark-and photo-conductivity of mu c-Si:H films are also described. A tandem solar cell with an entirely mu c-Si:H p-i-n bottom cell and an a-Si:H top cell has been prepared with an initial conversion efficiency of 8.91% (0.126 cm(2), AM1.5, 100 mW/cm(2)).
Resumo:
Polycrystalline silicon (poly-Si) films(similar to 10 mu m) were grown from dichlorosilane by a rapid thermal chemical vapor deposition (RTCVD) technique, with a growth rate up to 100 Angstrom/s at the substrate temperature (T-s) of 1030 degrees C. The average grain size and carrier mobility of the films were found to be dependent on the substrate temperature and material. By using the poly-Si films, the first model pn(+) junction solar cell without anti-reflecting (AR) coating has been prepared on an unpolished heavily phosphorus-doped Si wafer, with an energy conversion efficiency of 4.54% (AM 1.5, 100 mW/cm(2), 1 cm(2)).