965 resultados para Harvard College (1636-1780).--Class of 1761.
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results for the design of proportional plus integral plus derivative (PID) controllers concerning a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. © 2005 IEEE.
Resumo:
The class of hypergeometric polynomials F12(-m,b;b+b̄;1-z) with respect to the parameter b=λ+iη, where λ>0, are known to have all their zeros simple and exactly on the unit circle |z|=1. In this note we look at some of the associated extremal and orthogonal properties on the unit circle and on the interval (-1,1). We also give the associated Gaussian type quadrature formulas. © 2012 IMACS.
Resumo:
In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.
Resumo:
We study aperiodic and periodic tilings induced by the Rauzy fractal and its subtiles associated with beta-substitutions related to the polynomial x3-ax2-bx-1 for a≥b≥1. In particular, we compute the corresponding boundary graphs, describing the adjacencies in the tilings. These graphs are a valuable tool for more advanced studies of the topological properties of the Rauzy fractals. As an example, we show that the Rauzy fractals are not homeomorphic to a closed disc as soon as a≤2b-4. The methods presented in this paper may be used to obtain similar results for other classes of substitutions.© 2012 Elsevier B.V. All rights reserved.
Resumo:
A robust exponential function based controller is designed to synchronize effectively a given class of Chua's chaotic systems. The stability of the drive-response systems framework is proved through the Lyapunov stability theory. Computer simulations are given to illustrate and verify the method. © 2013 Patrick Louodop et al.
Resumo:
In this paper we obtain a result on simultaneous linearization for a class of pairs of involutions whose composition is normally hyperbolic. This extends the corresponding result when the composition of the involutions is a hyperbolic germ of diffeomorphism. Inside the class of pairs with normally hyperbolic composition, we obtain a characterization theorem for the composition to be hyperbolic. In addition, related to the class of interest, we present the classification of pairs of linear involutions via linear conjugacy. © 2012 Elsevier Masson SAS.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
By using the theory of semigroups of growth α, we discuss the existence of mild solutions for a class of abstract neutral functional differential equations. A concrete application to partial neutral functional differential equations is considered.
On the Limit Cycles for a Class of Continuous Piecewise Linear Differential Systems with Three Zones
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work deals with global solvability of a class of complex vector fields of the form L = partial derivative/partial derivative t + (a(x, t)+ ib(x, t))partial derivative/partial derivative x, where a and b are real-valued C-infinity functions, defined on the cylinder Omega = R x S-1. Relatively compact (Sussmann) orbits are allowed. The connection with Malgrange's notion of L-convexity for supports is investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.