Solvability in the large for a class of complex vector fields on the cylinder


Autoria(s): Bergamasco, Adalberto P.; Silva, Paulo L. Dattori da
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/09/2013

20/09/2013

01/03/2012

Resumo

This work deals with global solvability of a class of complex vector fields of the form L = partial derivative/partial derivative t + (a(x, t)+ ib(x, t))partial derivative/partial derivative x, where a and b are real-valued C-infinity functions, defined on the cylinder Omega = R x S-1. Relatively compact (Sussmann) orbits are allowed. The connection with Malgrange's notion of L-convexity for supports is investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.

CNPq

CNPq

FAPESP

FAPESP

Identificador

BULLETIN DES SCIENCES MATHEMATIQUES, PARIS, v. 136, n. 2, pp. 162-171, MAR, 2012

0007-4497

http://www.producao.usp.br/handle/BDPI/33518

10.1016/j.bulsci.2011.10.002

http://dx.doi.org/10.1016/j.bulsci.2011.10.002

http://ac.els-cdn.com/S0007449711001023/1-s2.0-S0007449711001023-main.pdf?_tid=5cc021f6-21e7-11e3-8c25-00000aacb35d&acdnat=1379676513_a3f039280405303be297a6972b64cce8

Idioma(s)

eng

Publicador

GAUTHIER-VILLARS/EDITIONS ELSEVIER

PARIS

Relação

Bulletin des Sciences Mathématiques

Direitos

restrictedAccess

Copyright GAUTHIER-VILLARS/EDITIONS ELSEVIER

Palavras-Chave #GLOBAL SOLVABILITY #CONDITION (P) #SUSSMANN ORBITS #P-CONVEXITY #GLOBAL SOLVABILITY #OPERATORS #2-TORUS #TORUS #MATHEMATICS, APPLIED
Tipo

article

original article

publishedVersion