Solvability in the large for a class of complex vector fields on the cylinder
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/09/2013
20/09/2013
01/03/2012
|
Resumo |
This work deals with global solvability of a class of complex vector fields of the form L = partial derivative/partial derivative t + (a(x, t)+ ib(x, t))partial derivative/partial derivative x, where a and b are real-valued C-infinity functions, defined on the cylinder Omega = R x S-1. Relatively compact (Sussmann) orbits are allowed. The connection with Malgrange's notion of L-convexity for supports is investigated. (C) 2011 Elsevier Masson SAS. All rights reserved. CNPq CNPq FAPESP FAPESP |
Identificador |
BULLETIN DES SCIENCES MATHEMATIQUES, PARIS, v. 136, n. 2, pp. 162-171, MAR, 2012 0007-4497 http://www.producao.usp.br/handle/BDPI/33518 10.1016/j.bulsci.2011.10.002 |
Idioma(s) |
eng |
Publicador |
GAUTHIER-VILLARS/EDITIONS ELSEVIER PARIS |
Relação |
Bulletin des Sciences Mathématiques |
Direitos |
restrictedAccess Copyright GAUTHIER-VILLARS/EDITIONS ELSEVIER |
Palavras-Chave | #GLOBAL SOLVABILITY #CONDITION (P) #SUSSMANN ORBITS #P-CONVEXITY #GLOBAL SOLVABILITY #OPERATORS #2-TORUS #TORUS #MATHEMATICS, APPLIED |
Tipo |
article original article publishedVersion |