A class of hypergeometric polynomials with zeros on the unit circle: Extremal and orthogonal properties and quadrature formulas
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/01/2013
|
Resumo |
The class of hypergeometric polynomials F12(-m,b;b+b̄;1-z) with respect to the parameter b=λ+iη, where λ>0, are known to have all their zeros simple and exactly on the unit circle |z|=1. In this note we look at some of the associated extremal and orthogonal properties on the unit circle and on the interval (-1,1). We also give the associated Gaussian type quadrature formulas. © 2012 IMACS. |
Formato |
41-52 |
Identificador |
http://dx.doi.org/10.1016/j.apnum.2012.11.002 Applied Numerical Mathematics, v. 65, p. 41-52. 0168-9274 http://hdl.handle.net/11449/74156 10.1016/j.apnum.2012.11.002 WOS:000314447900003 2-s2.0-84871552752 |
Idioma(s) |
eng |
Relação |
Applied Numerical Mathematics |
Direitos |
closedAccess |
Palavras-Chave | #Hypergeometric polynomials #Para-orthogonal polynomials #Quadrature rules #Extremal #Gaussian type quadrature #Orthogonal property #Quadrature formula #Unit circles #Computational methods #Mathematical techniques #Polynomials |
Tipo |
info:eu-repo/semantics/article |