On Global Attractors for a Class of Parabolic Problems
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
03/12/2014
03/12/2014
01/03/2014
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 09/08088-9 Processo FAPESP: 09/08435-0 This paper is devoted to study the existence of global attractor in H-0(1)(Omega) and uniform bounds of it in L-infinity(Omega) for a class of parabolic problems with homogeneous boundary conditions wich involves a uniform strongly elliptic operator of second order in the domain Omega subset of R-n. The main tools used to prove the existence of global attractor are the techniques used in Hale [8] and Cholewa [5], and for the uniform bound of the attractor we use the Alikakos-Moser iteration procedure [1]. |
Formato |
493-500 |
Identificador |
http://dx.doi.org/10.12785/amis/080206 Applied Mathematics & Information Sciences. New York: Natural Sciences Publishing Corp-nsp, v. 8, n. 2, p. 493-500, 2014. 2325-0399 http://hdl.handle.net/11449/112914 WOS:000331386900006 |
Idioma(s) |
eng |
Publicador |
Natural Sciences Publishing Corp-nsp |
Relação |
Applied Mathematics & Information Sciences |
Direitos |
closedAccess |
Palavras-Chave | #Parabolic equation #sectorial operator #global attractor #uniform boundness |
Tipo |
info:eu-repo/semantics/article |