On Global Attractors for a Class of Parabolic Problems


Autoria(s): Figueroa-Lopez, Rodiak; Lozada-Cruz, German
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/12/2014

03/12/2014

01/03/2014

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 09/08088-9

Processo FAPESP: 09/08435-0

This paper is devoted to study the existence of global attractor in H-0(1)(Omega) and uniform bounds of it in L-infinity(Omega) for a class of parabolic problems with homogeneous boundary conditions wich involves a uniform strongly elliptic operator of second order in the domain Omega subset of R-n. The main tools used to prove the existence of global attractor are the techniques used in Hale [8] and Cholewa [5], and for the uniform bound of the attractor we use the Alikakos-Moser iteration procedure [1].

Formato

493-500

Identificador

http://dx.doi.org/10.12785/amis/080206

Applied Mathematics & Information Sciences. New York: Natural Sciences Publishing Corp-nsp, v. 8, n. 2, p. 493-500, 2014.

2325-0399

http://hdl.handle.net/11449/112914

WOS:000331386900006

Idioma(s)

eng

Publicador

Natural Sciences Publishing Corp-nsp

Relação

Applied Mathematics & Information Sciences

Direitos

closedAccess

Palavras-Chave #Parabolic equation #sectorial operator #global attractor #uniform boundness
Tipo

info:eu-repo/semantics/article