Limit Cycles for a Class of Continuous and Discontinuous Cubic Polynomial Differential Systems
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
03/12/2014
03/12/2014
01/04/2014
|
Resumo |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Processo FAPESP: 10/17956-1 We study the maximum number of limit cycles that bifurcate from the periodic solutions of the family of isochronous cubic polynomial centers(x) over dot = y(-1 + 2 alpha x + 2 beta x(2)), (y) over dot = x + alpha(y(2) - x(2)) + 2 beta xy(2), alpha is an element of R, beta < 0,when it is perturbed inside the classes of all continuous and discontinuous cubic polynomial differential systems with two zones of discontinuity separated by a straight line. We obtain that this number is 3 for the perturbed continuous systems and at least 12 for the discontinuous ones using the averaging method of first order. |
Formato |
129-148 |
Identificador |
http://dx.doi.org/10.1007/s12346-014-0109-9 Qualitative Theory Of Dynamical Systems. Basel: Springer Basel Ag, v. 13, n. 1, p. 129-148, 2014. 1575-5460 http://hdl.handle.net/11449/112912 10.1007/s12346-014-0109-9 WOS:000334414100007 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Qualitative Theory of Dynamical Systems |
Direitos |
closedAccess |
Palavras-Chave | #Polynomial vector field #Limit cycle #Averaging method #Periodic orbit #Isochronous center |
Tipo |
info:eu-repo/semantics/article |