Limit Cycles for a Class of Continuous and Discontinuous Cubic Polynomial Differential Systems


Autoria(s): Llibre, Jaume; Lopes, Bruno D.; De Moraes, Jaime R.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/12/2014

03/12/2014

01/04/2014

Resumo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Processo FAPESP: 10/17956-1

We study the maximum number of limit cycles that bifurcate from the periodic solutions of the family of isochronous cubic polynomial centers(x) over dot = y(-1 + 2 alpha x + 2 beta x(2)), (y) over dot = x + alpha(y(2) - x(2)) + 2 beta xy(2), alpha is an element of R, beta < 0,when it is perturbed inside the classes of all continuous and discontinuous cubic polynomial differential systems with two zones of discontinuity separated by a straight line. We obtain that this number is 3 for the perturbed continuous systems and at least 12 for the discontinuous ones using the averaging method of first order.

Formato

129-148

Identificador

http://dx.doi.org/10.1007/s12346-014-0109-9

Qualitative Theory Of Dynamical Systems. Basel: Springer Basel Ag, v. 13, n. 1, p. 129-148, 2014.

1575-5460

http://hdl.handle.net/11449/112912

10.1007/s12346-014-0109-9

WOS:000334414100007

Idioma(s)

eng

Publicador

Springer

Relação

Qualitative Theory of Dynamical Systems

Direitos

closedAccess

Palavras-Chave #Polynomial vector field #Limit cycle #Averaging method #Periodic orbit #Isochronous center
Tipo

info:eu-repo/semantics/article