Positive Solution for a Class of Degenerate Quasilinear Elliptic Equations in R-N


Autoria(s): Bastos, Waldemar D.; Miyagaki, Olimpio H.; Vieira, Ronei S.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

18/03/2015

18/03/2015

01/12/2014

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

We establish a result on the existence of a positive solution for the following class of degenerate quasilinear elliptic problems:(P) {-Delta(up)u + V(x)vertical bar x vertical bar-(ap+)vertical bar u vertical bar(p-2)u = K(x)f(x, u), in R-N, u > 0, in R-N, u epsilon D-u(1,p)(R-N),where -Delta(ap)u = -div(vertical bar x vertical bar(-ap)vertical bar del u vertical bar(p-2)del u), 1 < p < N, -infinity < a < N-p/p, a <= e <= a + 1, d = 1 + a - e, and p* := p*(a, e) = Np/N-dp denotes the Hardy-Sobolev's , and denotes the Hardy-Sobolev's critical exponent, V and K are bounded nonnegative continuous potentials, K vanishes at infinity, and f has a subcritical growth at infinity. The technique used here is the variational approach.

Formato

213-231

Identificador

http://dx.doi.org/10.1007/s00032-014-0224-8

Milan Journal Of Mathematics. Basel: Springer Basel Ag, v. 82, n. 2, p. 213-231, 2014.

1424-9286

http://hdl.handle.net/11449/116243

10.1007/s00032-014-0224-8

WOS:000345142800002

Idioma(s)

eng

Publicador

Springer

Relação

Milan Journal Of Mathematics

Direitos

closedAccess

Palavras-Chave #Positive solutions #Schrodinger operator #Variational methods for second-order elliptic equations #Degenerate elliptic equations
Tipo

info:eu-repo/semantics/article