Positive Solution for a Class of Degenerate Quasilinear Elliptic Equations in R-N
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
18/03/2015
18/03/2015
01/12/2014
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) We establish a result on the existence of a positive solution for the following class of degenerate quasilinear elliptic problems:(P) {-Delta(up)u + V(x)vertical bar x vertical bar-(ap+)vertical bar u vertical bar(p-2)u = K(x)f(x, u), in R-N, u > 0, in R-N, u epsilon D-u(1,p)(R-N),where -Delta(ap)u = -div(vertical bar x vertical bar(-ap)vertical bar del u vertical bar(p-2)del u), 1 < p < N, -infinity < a < N-p/p, a <= e <= a + 1, d = 1 + a - e, and p* := p*(a, e) = Np/N-dp denotes the Hardy-Sobolev's , and denotes the Hardy-Sobolev's critical exponent, V and K are bounded nonnegative continuous potentials, K vanishes at infinity, and f has a subcritical growth at infinity. The technique used here is the variational approach. |
Formato |
213-231 |
Identificador |
http://dx.doi.org/10.1007/s00032-014-0224-8 Milan Journal Of Mathematics. Basel: Springer Basel Ag, v. 82, n. 2, p. 213-231, 2014. 1424-9286 http://hdl.handle.net/11449/116243 10.1007/s00032-014-0224-8 WOS:000345142800002 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Milan Journal Of Mathematics |
Direitos |
closedAccess |
Palavras-Chave | #Positive solutions #Schrodinger operator #Variational methods for second-order elliptic equations #Degenerate elliptic equations |
Tipo |
info:eu-repo/semantics/article |