A class of cubic Rauzy fractals
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
21/10/2015
21/10/2015
11/07/2015
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 2013/24541-0 Processo FAPESP: 2008/02841-4 Processo FAPESP: 2010108654-1 In this paper, we study arithmetical and topological properties for a class of Rauzy fractals R-a given by the polynomial x(3) - ax(2) + x - 1 where a >= 2 is an integer. In particular, we prove the number of neighbors of R-a in the periodic tiling is equal to 8. We also give explicitly an automaton that generates the boundary of R-a. As a consequence, we prove that R-2 is homeomorphic to a topological disk. |
Formato |
114-130 |
Identificador |
http://www.sciencedirect.com/science/article/pii/S030439751500314X Theoretical Computer Science. Amsterdam: Elsevier Science Bv, v. 588, p. 114-130, 2015. 0304-3975 http://hdl.handle.net/11449/128863 http://dx.doi.org/10.1016/j.tcs.2015.04.007 WOS:000357222400010 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Theoretical Computer Science |
Direitos |
closedAccess |
Palavras-Chave | #Rauzy fractals #Numeration system #Automaton #Topological properties |
Tipo |
info:eu-repo/semantics/article |