Existence of solutions for a class of degenerate quasilinear elliptic equation in R-N with vanishing potentials
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
03/12/2014
03/12/2014
17/04/2013
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) We establish the existence of positive solution for the following class of degenerate quasilinear elliptic problem(P) {-Lu-ap + V(x)vertical bar x vertical bar(-ap*)vertical bar u vertical bar(p-2)u = f(u) in R-N, u > 0 in R-N; u is an element of D-a(1,p) (R-N)where -Lu-ap = -div(vertical bar x vertical bar(-ap)vertical bar del vertical bar(p-2)del u), 1 < N, -infinity < a < N-p/p, a <= e <= a + 1, d = 1 + a - e, and p* = p* (a, e) = Np/N-dp denote the Hardy-Sobolev's critical exponent, V is a bounded nonnegative vanishing potential and f has a subcritical growth at infinity. The technique used here is a truncation argument together with the variational approach. |
Formato |
16 |
Identificador |
http://dx.doi.org/10.1186/1687-2770-2013-92 Boundary Value Problems. Cham: Springer International Publishing Ag, 16 p., 2013. 1687-2770 http://hdl.handle.net/11449/111584 10.1186/1687-2770-2013-92 WOS:000333981800001 WOS000333981800001.pdf |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Boundary Value Problems |
Direitos |
openAccess |
Tipo |
info:eu-repo/semantics/article |