915 resultados para Shanghai Expo
Resumo:
We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52 fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12 fs.
Resumo:
In order to improve the total-dose radiation hardness of the buried oxides(BOX) in the structure of separa tion-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI), nitrogen ions are implanted into the buried oxides with two different doses,2 × 1015 and 3 × 1015 cm-2 , respectively. The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source. Despite the small difference between the doses of nitrogen implantation, the nitrogen-implanted 2 × 1015 cm-2 BOX has a much higher hardness than the control sample (i. e. the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5 × 104rad(Si), whereas the nitrogen-implanted 3 × 1015 cm-2 BOX has a lower hardness than the control sample. However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5 × 104 to 5 × 105 rad (Si)). The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed. In addition, the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.
Resumo:
Using thermal evaporation, Ti/6H-SiC Schottky barrier diodes (SBD) were fabricated. They showed good rectification characteristics from room temperature to 200degreesC. At low current density. the current conduction mechanism follows the thermionic emission theory. These diodes demonstrated a low reverse leakage current of below 1 X 10(-4)Acm(-2). Using neon implantation to form the edge termination, the breakdown voltage was improved to be 800V. In addition. these SBDs showed superior switching characteristics.
Resumo:
The semiconductor microlasers with an equilateral triangle resonator which can be fabricated by dry etching technique from the laser wafer of the edge emitting laser, are analyzed by FDTD technique and rate equations. The results show that ETR microlaser is suitable to realize single mode operation. By connecting an output waveguide to one of the vertices of the ETR, we still can get the confined modes with high quality factors. The EM microlasers are potential light sources for photonic integrated circuits.
Resumo:
We report some investigations on vertical cavity surface emitting laser (VCSEL) arrays and VCSEL based optoelectronic smart photonic multiple chip modules (MCM), consisting of 1x16 vertical cavity surface emitting laser array and 16-channel lasers driver 0.35 Pin CMOS circuit. The hybrid integrated multiple chip modules based on VCSEL operate at more than 2GHz in -3dB frequency bandwidth.
Resumo:
Small signal equivalent circuit model of vertical cavity surface emitting lasers (VCSEL's) is given in this paper. The modulation properties of VCSEL are simulated using this model in Pspice program. The simulation results are good agree with experiment data. Experiment is performed to testify the circuit model.
Resumo:
Deep level transient spectroscopy (DLTS) technique was used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular fiction epitaxy (MBE), Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x = 0. 0.017, 0.04 and 0.046. respectively) epilayers reveal that At doping leads to the formation of two electron traps at 0.21 and 0.39 eV below the conduction hand. 1)DLTFS results suggest that in addition to the rules of Te as a component of [lie alloy as well as isoelectronic centers, Te is also involved in the formation of all electron trip, whose energy level relative to the conduction hand decreases a, Te composition increases.
Resumo:
Low power design method is used in a 100MHz embedded SRAM. The embedded SRAM used in a FFT chip is divided into 16 blocks. Two-level decoders are used and only one block can be selected at one time by tristate control circuits, while other blocks are set stand-by. The SRAM cell has been optimized and the cell area has been minimized at the same time.
Resumo:
Scan test can be inserted around hard IP cores that have not been designed with DFT approaches. An 18x18 bits Booth Coding-Wallace Tree multiplier has been designed with full custom approach with 0.61 m CMOS technology. When we reuse the multiplier in another chip, scan chain has been inserted around it to increase the fault coverage. After scan insertion, the multiplier needs 4.7% more areas and 24.4% more delay time, while the fault coverage reaches to 95%.
Resumo:
Design of the typical laser diode side-pumped Nd:YAG rod system has been discussed using the conventional ray tracing method in this paper. Firstly introduce two basic matrices, refractional and translational matrix, described the transmission of nonparaxial light ray in the medium without concerning the absorption of light. And then, using those matrices, analyze the distribution of pump light in the crystal respectively under the condition of directly pumped system and indirectly pumped system with a cylindrical quartz rod as focusing lens. From the result of simulation, we compare the advantage and disadvantage of the two pumped method, and mainly consider how to select the diameter of the focus lens and cooling tube, indicate the effect of deionized water and cooling tube have on the pump light distribution in the active material. At last, make some conclusions about the side-pumped Nd:YAG laser system.
Resumo:
The stress distribution in silica optical waveguides on silicon is calculated by using finite element method (FEM). The waveguides are mainly subjected to compressive stress along the x direction and the z direction, and it is accumulated near the interfaces between the core and cladding layers. The shift of central wavelength of silica arrayed waveguide grating (AWG) on silicon-substrate with the designed wavelength and the polarization dependence are caused by the stress in the silica waveguides.
Resumo:
Structural dependence on annealing of a-SiOx:H was studied by using infrared absorption and Raman scattering. The appearance of Raman peaks in the range of 513-519cm(-1) after 1170 degreesC annealing was interpreted as the formation nanocrystalline silicon with the sizes from 3-10nm. The Raman spectra also show the existence of amorphous-like silicon phase, which is associated with Si-Si bond re-construction at boundaries of silicon nanocrystallites. The presence of the shoulder at 980cm(-1) of Si-O-Si stretching vibration at 1085cm(-1) in infrared spectra imply that except that SiO2 phase, there is silicon sub-oxide phase in the films annealed at 1170 degreesC. This sub-oxide phase is located at the interface between Si crystallites and SiO2, and thus support the shell model for the mixed structures of Si grains and SiO2 matrix.
Resumo:
The tunable ridge waveguide distributed Bragg reflector (DBR) lasers designed for wavelength-division-multiplex (WDM) communication systems at 1.55 um by using selective area growth (SAG) is reported. The threshold current of the DBR laser is 62mA and the output power is more than 8mW. The isolation resistance between the active region and the Bragg region is 30K Ohm. The total tuning range is 6.5nm and this DBR laser can provide 6 continuous standard WDM channels with 100GHz channel spacing; in the tuning range, the single mode suppression ratio (SMSR) is maintained more than 32dB and the maximum output power variation is less than 3dB.
Resumo:
Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.
Resumo:
A semi-insulating GaAs single crystal ingot was grown in a recoverable satellite, within a specially designed pyrolytic boron nitride crucible, in a power-traveling furnace under microgravity. The characteristics of a compound semiconductor single crystal depends fundamentally on its stoichiometry, i.e. the ration of two types of atoms in the crystal. a practical technique for nondestructive and quantitative measuring stoichiometry in GaAs single crystal was used to analyze the space-grown GaAs single crystal. The distribution of stoichiometry in a GaAs wafer was measured for the first time. The electrical, optical and structural properties of the space-grown GaAs crystal were studied systematically, Device fabricating experiments prove that the quality of field effect transistors fabricated from direct ion-implantation in semi-insulating GaAs wafers has a close correlation with the crystal's stoichiometry. (C) 2000 Elsevier Science S.A. All rights reserved.