991 resultados para GaAs(311)B


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the passivation of two deep copper-related acceptor levels in Cu-diffused p-type GaAs by the group-I element lithium. The deep-level-transient-spectroscopy (DLTS) signals of the well-known Cu-related levels with apparent activation energies 0.15 eV and 0.40 eV disappear in Cu-diffused samples when they are diffused with Li, but can be reactivated by annealing. Photoluminescence measurements show a corresponding disappearance and reappearance of the copper-related luminescence at 1.36 eV. Also we observe with DLT'S an energy level at E(V) + 0.32 eV in the Cu-Li-diff-used samples. The level is neither present in the Cu-diffused samples before Li diffusion nor in Cu-Li-diffused samples after annealing. As the level is not observed in starting materials or solely Li-diffused samples we suggest that it is related to a Cu-Li complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lattice damage accumulation in GaAs and Al0.3Ga0.7As/GaAs superlattices by 1 MeV Si+ irradiation at room temperature and 350-degrees-C has been studied. For irradiations at 350-degrees-C, at lower doses the samples were almost defect-free after irradiation, while a large density of accumulated defects was induced at a higher dose. The critical dose above which the damage accumulation is more efficient is estimated to be 2 x 10(15) Si/cm2 for GaAs, and is 5 x 10(15) Si/cm2 for Al0.8Ga0.7As/GaAs superlattice for implantation with 1.0 MeV Si ions at 350-degrees-C. The damage accumulation rate for 1 MeV Si ion implantation in Al0.3Ga0.7As/GaAs superlattice is less than that in GaAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the Wannier-Stark effect in GaAs/GaAl1-xAs superlattices under electric fields by photocurrent spectroscopy measurements in the range of temperatures 10-300 K. The linewidth of the Oh Stark-ladder exciton was found to increase significantly along with an increase in peak intensity when the electric field increases. We present a mechanism based on an enhanced interface roughness scattering of electronic states due to Wannier-Stark localization in order to explain this increased broadening with electric field. This electric-field-related scattering mechanism will weaken the negative differential conductance effects in superlattices predicted by Esaki and Tsu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report lithium passivation of the shallow acceptors Zn and Cd in p-type GaAs which we attribute to the formation of neutral Li-Zn and Li-Cd complexes. Similar to hydrogen, another group-I element, lithium strongly reduces the concentration of free holes when introduced into p-type GaAs. The passivation is inferred from an increase of both the hole mobility and the resisitivity throughout the bulk of the sample. It is observed most clearly for Li concentrations comparable to the shallow-acceptor concentration. In addition, compensation of shallow acceptors by randomly distributed donors is present in varying degree in the Li-diffused samples. Unlike hydrogenation of n-type GaAs, Li doping shows no evidence of neutralizing shallow donors in GaAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that Li diffusion of GaAs can give rise to semi-insulating samples with electrical resistivity as high as 10(7) OMEGAcm in undoped, n-type, and p-type starting materials. The optical properties of the compensated samples are correlated with the depletion of free carriers caused by the Li diffusion. The radiative recombination of the Li-compensated samples is dominated by emissions with excitation-dependent peak positions that shift to lower energies with increasing compensation. The photoluminescence properties are characteristic of fluctuations of the electrostatic potential in strongly doped, compensated crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of DLTS on the alloy InxGa1-xAsyP1-y (0 less-than-or-equal-to y less-than-or-equal-to 0.3; 0.5 greater-than-or-equal-to x greater-than-or-equal-to 0.35) shows a new signal, labeled as E2, with an activation energy of E(c) - 0.61 eV and the SIMS signals show a large number of oxygen. To clarify is further, the energy of the deep level E2 is quantitatively calculated by using Vogl's tight-binding theory and Hjalmarson's deep level theory. As a result, the deep A1-symmetric level associated with an oxygen on the anion site of InxGa1-xAsyP1-y locates deeply in the band gap. Thus, the level E2 is considered to be induced by the oxygen impurity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence from InxG1-xAs/GaAs strained quantum wells with thickness from 30 to 160 angstrom have been studied at 77 K under hydrostatic pressure up to 60 kbar. It was found that the pressure coefficients of the exciton peaks corresponding to transitions from the first conduction subband to the heavy-hole subband increased with reduced well width, in contrast to the case of GaAs/AlxGa1-xAs quantum wells. Calculations revealed that the increased barrier height with pressure was the major cause of the change in the pressure coefficients. Two peaks related to indirect transitions were observed at pressures higher than 50 kbar. They are attributed to type-I transitions from the lowest conduction-band edge, which are the strain splitted X(xy) valleys, to the heavy-hole subband in the InxGa1-xAs well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basic idea of a defect model of photoconversion by an oxygen impurity in semi-insulating GaAs, proposed in an earlier paper, is described in a systematic way. All experiments related to this defect, including high-resolution spectroscopic measurements, piezospectroscopic study, and recent measurements on electronic energy levels, are explained on the basis of this defect model. The predictions of the model are in good agreement with the experiments. A special negative-U mechanism in this defect is discussed in detail with an emphasis on the stability of the charge states. The theoretical basis of using a self-consistent bond-orbital model in the calculation is also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman spectra of (GaAs)n1/(AlAs)n2 ultrathin-layer superlattices were measured at room temperature and under off-resonance conditions. The experimental results show that there are two effects in ultrathin-layer superlattices: the confinement effect of LO phonons and the alloy effect. It is found that the relative intensity of the disorder-activated TO mode can give a measure of the alloy effect. The Raman spectra of one-monolayer superlattices measured in various scattering configurations are very similar to those of the Al0.5Ga0.5As alloy, and thus the alloy effect is prominent. However, in the case of monolayer number n greater-than-or-equal-to 4, the confined effect is prominent, while the alloy effect is only shown as an interface effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have applied the Green-function method in the GW approximation to calculate quasiparticle energies for the semiconductors GaP and GaAs. Good agreement between the calculated excitation energies and the experimental results was achieved. We obtained calculated direct band gaps of GaP and GaAs of 2.93 and 1.42 eV, respectively, in comparison with the experimental values of 2.90 and 1.52 eV, respectively. An ab initio pseudopotential method has been used to generate basis wave functions and charge densities for calculating the dielectric matrix elements and self-enegies. To evaluate the dynamical effects of the screened interaction, the generalized-plasma-pole model has been utilized to extend the dielectric matrix elements from static results to finite frequencies. We presen the calculated quasiparticle energies at various high-symmetry points of the Brillouin zone and compare them with the experimental results and other calculations.