226 resultados para EPILAYERS
Resumo:
We investigated AlGaN layers grown by metalorganic chemical vapor deposition (MOCVD) on high temperature (HT-)GaN and AlGaN buffer layers. On GaN buffer layer, there are a lot of surface cracking because of tensile strain in subsequent AlGaN epilayers. On HT-AlGaN buffer layer, not only cracks but also high densities rounded pits present, which is related to the high density of coalescence boundaries in HT-AlGaN growth process.The insertion of interlayer (IL) between AlGaN and the GaN pseudosubstrate can not only avoid cracking by modifying the strain status of the epilayer structure, but also improved Al incorporation efficiency and lead to phase-separation. And we also found the growth temperature of IL is a critical parameter for crystalline quality of subsequent AlGaN epilayer. Low temperature (LT-) A1N IL lead to a inferior quality in subsequent AlGaN epilayers.
Resumo:
Patterning sapphire substrate can relax the stress in the nitride epilayer, reduce the threading dislocation density, and significantly improve device performance. In this article, a wet-etching method for sapphire substrate is developed. The effect of substrate surface topographies on the quality of the GaN epilayers and corresponding device performance are investigated. The GaN epilayers grown on the wet-patterned sapphire substrates by MOCVD are characterized by means of scanning electrical microscopy (SEM), atomic force microscopy (AFM), high-resolution x-ray diffraction (HRXRD), and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about a 22% increase in device performance with light output power of 13.31 mW@20mA is measured for the InGaN/GaN blue LEDs grown on the wet-patterned sapphire substrate.
Resumo:
The correlation between the energy band-gap of AlxGa1-xN epitaxial thin films and lattice strain was investigated using both High Resolution X-ray Diffraction (HRXRD) and Spectroscopic Ellipsometry (SE). The Al fraction, lattice relaxation, and elastic lattice strain were determined for all AlxGa1-xN epilayers, and the energy gap as well. Given the type of intermediate layer, a correlation trend was found between energy band-gap bowing parameter and lattice mismatch, the higher the lattice mismatch is, the smaller the bowing parameter (b) will be.
Resumo:
The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.
Resumo:
The morphological defects and uniformity of 4H-SiC epilayers grown by hot wall CVD at 1500 degrees C on off-oriented (0001) Si faces are characterized by atomic force microscope, Nomarski optical microscopy, and Micro-Raman spectroscopy. Typical morphological defects including triangular defects, wavy steps, round pits, and groove defects are observed in mirror-like SiC epilayers. The preparation of the substrate surface is necessary for the growth of high-quality 4H-SiC epitaxial layers with low-surface defect density under optimized growth conditions. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Wafers with normal light-emitting diode structure were grown by metal organic chemical vapor deposition system. The pressure and temperature were varied during growth of buffer layer in order to grow different types of epilayers. The cathodoluminescence results show that the interface distortion of quantum well plays an important role in radiant efficiency. The electroluminescence detections indicate that the dislocations also influence the external quantum efficiency by lowering the electron injection efficiency. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.
Resumo:
Homoepitaxial growth of 4H-SiC on off-oriented n-type Si-face (0001) substrates was performed in a home-made hot-wall low pressure chemical vapor deposition (LPCVD) reactor with SiH4 and C2H4 at temperature of 1500 C and pressure of 20 Torr. The surface morphology and intentional in-situ NH3 doping in 4H-SiC epilayers were investigated by using atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS). Thermal oxidization of 4H-SiC homoepitaxial layers was conducted in a dry O-2 and H-2 atmosphere at temperature of 1150 C. The oxide was investigated by employing x-ray photoelectron spectroscopy (XPS). 4H-SiC MOS structures were obtained and their C-V characteristics were presented.
Resumo:
We have investigated the hydride vapor-phase epitaxy growth of (10 (1) over bar(3) over bar)-oriented GaN thick films on patterned sapphire substrates (PSSs) (10 (1) over bar0). From characterization by atomic force microscopy, scanning electron microscopy, double-crystal X-ray diffraction, and photoluminescence (PL), it is determined that the crystalline and optical qualities of (10 (1) over bar(3) over bar) GaN epilayers grown on the cylindrical PSS are better than those on the flat sapphire. However, two main crystalline orientations (10 (1) over bar(3) over bar) and (11 (2) over bar2) dominate the GaN epilayers grown on the pyramidal PSS, demonstrating poor quality. After etching in the mixed acids, these (10 (1) over bar(3) over bar) GaN films are dotted with oblique pyramids, concurrently lining along the < 30 (3) over bar2 > direction, indicative of a typical N-polarity characteristic. Defect-related optical transitions of the (10 (1) over bar(3) over bar) GaN epilayers are identified and detailedly discussed in virtue of the temperature-dependent PL. In particular, an anomalous blueshift-redshift transition appears with an increase in temperature for the broad blue luminescence due to the thermal activation of the shallow level.
Resumo:
ZnTe epilayers were grown on GaAs(0 0 1) substrates by molecular beam epitaxy (MBE) at different VI/II beam equivalent pressure (BEP) ratios (R-VI/II) in a wide range of 0.96-11 with constant Zn flux. Based on in situ reflection high-energy electron diffraction (RHEED) observation, two-dimensional (2D) growth mode can be formed by increasing the R-VI/II to 2.8. The Te/Zn pressure ratios lower than 4.0 correspond to Zn-rich growth state, while the ratios over 6.4 correspond to Te-rich one. The Zn sticking coefficient at various VI/II ratios are derived by the growth rate measurement. The ZnTe epilayer grown at a R-VI/II of 6.4 displays the narrowest full-width at half-maximum (FWHM) of double-crystal X-ray rocking curve (DCXRC) for (0 0 4) reflection. Atomic force microscopy (AFM) characterization shows that the grain size enlarges drastically with the R-VI/II. The surface root-mean-square (RMS) roughness decreases firstly, attains a minimum of 1.14 nm at a R-VI/II of 4.0 and then increases at higher ratios. It is suggested that the most suitable R-VI/II be controlled between 4.0 and 6.4 in order to grow high-quality ZnTe epitaxial thin films.
Resumo:
GaSb films with AlSb/GaSb compound buffer layers were grown by molecular beam epitaxy on GaAs (001) substrates. The crystal quality and optical properties were studied by high resolution transition electron microscopy and low temperature photoluminescence spectra (PL), respectively. It was found that the AlSb/GaSb compound buffer layers can restrict the dislocations into GaSb epilayers. The intensity of PL spectra of GaSb layer becomes large with the increasing the periods of AlSb/GaSb superlattices, indicating that the optical quality of GaSb films is improved.
Resumo:
The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.
Resumo:
Unintentionally doped GaN epilayers are grown by the metalorganic chemical vapor deposition (MOCVD). Photovoltaic (PV) spectroscopy shows that there appears an abnormal photoabsorption in some undoped GaN films with high resistance. The peak energy of the absorption spectrum is smaller than the intrinsic energy band gap of GaN. This phenomenon may be related to exciton absorption. Then metal-semiconductor-metal (MSM) Schottky photodetectors are fabricated on these high resistance epilayers. The photo spectrum responses are different when the light individually irradiates each of the two electrodes with the photodetector which are differently biased. When the excitation light irradiates around the reverse biased Schottky junction, the responsivity is almost one order of magnitude larger than that around the forward biased junction. Furthermore, when the excitation light irradiates the reverse biased Schottky junction, the peak energy of the spectrum has a prominent red-shift compared with the peak energy of the spectrum measured with the excitation light irradiating the forward biased Schottky junction. The shift value is about 28 meV, and it is found to be insensitive to temperature. According to the analyses of the distribution of the electric field within the MSM device and the different dependences of the response on the electric field intensity between the free carriers and excitons, a reliable explanation for the different response among various areas is proposed.
Resumo:
Using gas-source molecular beam epitaxy, we have obtained high-quality GaInP and (AlGa)InP epilayers lattice-matched to (100) GaAs substrates. All grown layers exhibited mirror-like surfaces. For a 1.7 mum thick Ga0.5In0.5P film, the Hall electron mobility was 3400 and 30,000 CM2/V. s at 300 and 77 K, respectively. The luminescence wavelength of (AlxGa1-x)InP samples ranged from 680 nm (for GaInP) to 590 nm (for AlInP) at room temperature, and from 644 to 513 nm at 77 K. The multiple quantum well (MQW) structure with well width of 40 angstrom showed strong luminescence intensity with wavelength of 647 nm (300 K) or 622 nm (80 K). The satellite peaks can be detected in double-crystal X-ray (DCXR) diffraction measurements of the MQW samples, which indicates the perfect structural periodicity.
Resumo:
The reaction between an indium over layer and high purity MBE grown n-ZnSe chlorine doped (2x 10(18) cm-3) epilayers has been investigated using X-ray diffraction, Rutherford backscattering spectroscopy, X-ray photoelectron and Auger electron spectroscopy, and by electrical function tests (I-V and C-V). Good ohmic contacts were formed after annealing at 250 or 300-degrees-C for a few minutes in forming gas. Annealing at lower or higher temperatures resulted in higher resistance or rectifying contacts. The data show that no compounds were formed at the interface; instead In appeared to diffuse into the ZnSe. High surface doping densities appear to allow an ohmic contact, but the electrical data suggest that compensation effects are also very significant in the formation of the contact. These effects must be considered for successful formation of the ohmic contact.