35 resultados para Heisenberg antiferromagnets
Resumo:
In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.
Resumo:
We develop a modulus method for surface families inside a domain in the Heisenberg group and we prove that the stretch map between two Heisenberg spherical rings is a minimiser for the mean distortion among the class of contact quasiconformal maps between these rings which satisfy certain boundary conditions.
Resumo:
We prove analogs of classical almost sure dimension theorems for Euclidean projection mappings in the first Heisenberg group, equipped with a sub-Riemannian metric.
Resumo:
We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N = 2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U (1) × U (1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry – as opposed to Heisenberg U (1). We finally discuss the realization of the latter by gauging appropriate Sp(2, 4) generators in N = 2 conformal supergravity.
Resumo:
In this paper we solve a problem raised by Gutiérrez and Montanari about comparison principles for H−convex functions on subdomains of Heisenberg groups. Our approach is based on the notion of the sub-Riemannian horizontal normal mapping and uses degree theory for set-valued maps. The statement of the comparison principle combined with a Harnack inequality is applied to prove the Aleksandrov-type maximum principle, describing the correct boundary behavior of continuous H−convex functions vanishing at the boundary of horizontally bounded subdomains of Heisenberg groups. This result answers a question by Garofalo and Tournier. The sharpness of our results are illustrated by examples.
Resumo:
Steiner’s tube formula states that the volume of an ϵ-neighborhood of a smooth regular domain in Rn is a polynomial of degree n in the variable ϵ whose coefficients are curvature integrals (also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ϵ-neighborhood with respect to the Heisenberg metric is an analytic function of ϵ that is generally not a polynomial. The coefficients of the series expansion can be explicitly written in terms of integrals of iteratively defined canonical polynomials of just five curvature terms.
Resumo:
The modulus method introduced by H. Grötzsch yields bounds for a mean distortion functional of quasiconformal maps between two annuli mapping the respective boundary components onto each other. P. P. Belinskiĭ studied these inequalities in the plane and identified the family of all minimisers. Beyond the Euclidean framework, a Grötzsch-Belinskiĭ-type inequality has been previously considered for quasiconformal maps between annuli in the Heisenberg group whose boundaries are Korányi spheres. In this note we show that--in contrast to the planar situation--the minimiser in this setting is essentially unique.
Resumo:
Let $\H^n$ be the Heisenberg group of topological dimension 2n+1 . We prove that if n is odd, the pair of metric spaces $(\H^n, \H^n)$ does not have the Lipschitz extension property.
Resumo:
We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(1-)), acac (= pentane-2,4-dionate(1-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.
Resumo:
In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r1/r potential.
Resumo:
We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
Resumo:
We investigate the simple harmonic oscillator in a 1-d box, and the 2-d isotropic harmonic oscillator problem in a circular cavity with perfectly reflecting boundary conditions. The energy spectrum has been calculated as a function of the self-adjoint extension parameter. For sufficiently negative values of the self-adjoint extension parameter, there are bound states localized at the wall of the box or the cavity that resonate with the standard bound states of the simple harmonic oscillator or the isotropic oscillator. A free particle in a circular cavity has been studied for the sake of comparison. This work represents an application of the recent generalization of the Heisenberg uncertainty relation related to the theory of self-adjoint extensions in a finite volume.