Lions-type compactness and Rubik actions on the Heisenberg group


Autoria(s): Balogh, Zoltán M.; Kristály, Alexandru
Data(s)

01/09/2013

Resumo

In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/41972/1/report12-03.pdf

http://boris.unibe.ch/41972/7/__ubnetapp02_user%24_brinksma_Downloads_lionstyp.pdf

Balogh, Zoltán M.; Kristály, Alexandru (2013). Lions-type compactness and Rubik actions on the Heisenberg group. Calculus of Variations and Partial Differential Equations, 48(1-2), pp. 89-109. Springer 10.1007/s00526-012-0543-y <http://dx.doi.org/10.1007/s00526-012-0543-y>

doi:10.7892/boris.41972

info:doi:10.1007/s00526-012-0543-y

urn:issn:0944-2669

Idioma(s)

eng

Publicador

Springer

Relação

http://boris.unibe.ch/41972/

Direitos

info:eu-repo/semantics/openAccess

info:eu-repo/semantics/restrictedAccess

Fonte

Balogh, Zoltán M.; Kristály, Alexandru (2013). Lions-type compactness and Rubik actions on the Heisenberg group. Calculus of Variations and Partial Differential Equations, 48(1-2), pp. 89-109. Springer 10.1007/s00526-012-0543-y <http://dx.doi.org/10.1007/s00526-012-0543-y>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed