Lions-type compactness and Rubik actions on the Heisenberg group
Data(s) |
01/09/2013
|
---|---|
Resumo |
In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods. |
Formato |
application/pdf application/pdf |
Identificador |
http://boris.unibe.ch/41972/1/report12-03.pdf http://boris.unibe.ch/41972/7/__ubnetapp02_user%24_brinksma_Downloads_lionstyp.pdf Balogh, Zoltán M.; Kristály, Alexandru (2013). Lions-type compactness and Rubik actions on the Heisenberg group. Calculus of Variations and Partial Differential Equations, 48(1-2), pp. 89-109. Springer 10.1007/s00526-012-0543-y <http://dx.doi.org/10.1007/s00526-012-0543-y> doi:10.7892/boris.41972 info:doi:10.1007/s00526-012-0543-y urn:issn:0944-2669 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
http://boris.unibe.ch/41972/ |
Direitos |
info:eu-repo/semantics/openAccess info:eu-repo/semantics/restrictedAccess |
Fonte |
Balogh, Zoltán M.; Kristály, Alexandru (2013). Lions-type compactness and Rubik actions on the Heisenberg group. Calculus of Variations and Partial Differential Equations, 48(1-2), pp. 89-109. Springer 10.1007/s00526-012-0543-y <http://dx.doi.org/10.1007/s00526-012-0543-y> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |