Steiner’s formula in the Heisenberg group
Data(s) |
2015
31/12/1969
|
---|---|
Resumo |
Steiner’s tube formula states that the volume of an ϵ-neighborhood of a smooth regular domain in Rn is a polynomial of degree n in the variable ϵ whose coefficients are curvature integrals (also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ϵ-neighborhood with respect to the Heisenberg metric is an analytic function of ϵ that is generally not a polynomial. The coefficients of the series expansion can be explicitly written in terms of integrals of iteratively defined canonical polynomials of just five curvature terms. |
Formato |
application/pdf application/pdf |
Identificador |
http://boris.unibe.ch/81134/1/Revision_09042015.pdf http://boris.unibe.ch/81134/8/1-s2.0-S0362546X15001571-main.pdf Balogh, Zoltan; Ferrari, Fausto; Franchi, Bruno; Vecchi, Eugenio; Wildrick, Kevin Michael (2015). Steiner’s formula in the Heisenberg group. Nonlinear Analysis: Theory, Methods & Applications, 126, pp. 201-217. Elsevier 10.1016/j.na.2015.05.006 <http://dx.doi.org/10.1016/j.na.2015.05.006> doi:10.7892/boris.81134 info:doi:10.1016/j.na.2015.05.006 urn:issn:0362-546X |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://boris.unibe.ch/81134/ |
Direitos |
info:eu-repo/semantics/embargoedAccess info:eu-repo/semantics/restrictedAccess |
Fonte |
Balogh, Zoltan; Ferrari, Fausto; Franchi, Bruno; Vecchi, Eugenio; Wildrick, Kevin Michael (2015). Steiner’s formula in the Heisenberg group. Nonlinear Analysis: Theory, Methods & Applications, 126, pp. 201-217. Elsevier 10.1016/j.na.2015.05.006 <http://dx.doi.org/10.1016/j.na.2015.05.006> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |