Uniqueness of minimisers for a Grötzsch-Belinskiĭ type inequality in the Heisenberg group


Autoria(s): Balogh, Zoltan; Fässler, Katrin; Platis, Ioannis
Data(s)

2015

Resumo

The modulus method introduced by H. Grötzsch yields bounds for a mean distortion functional of quasiconformal maps between two annuli mapping the respective boundary components onto each other. P. P. Belinskiĭ studied these inequalities in the plane and identified the family of all minimisers. Beyond the Euclidean framework, a Grötzsch-Belinskiĭ-type inequality has been previously considered for quasiconformal maps between annuli in the Heisenberg group whose boundaries are Korányi spheres. In this note we show that--in contrast to the planar situation--the minimiser in this setting is essentially unique.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/81136/1/minimisersB1_05112014.pdf

http://boris.unibe.ch/81136/8/S1088-4173-2015-00278-7.pdf

Balogh, Zoltan; Fässler, Katrin; Platis, Ioannis (2015). Uniqueness of minimisers for a Grötzsch-Belinskiĭ type inequality in the Heisenberg group. Conformal Geometry and Dynamics, 19(6), pp. 122-145. American Mathematical Society 10.1090/ecgd/278 <http://dx.doi.org/10.1090/ecgd/278>

doi:10.7892/boris.81136

info:doi:10.1090/ecgd/278

urn:issn:1088-4173

Idioma(s)

eng

Publicador

American Mathematical Society

Relação

http://boris.unibe.ch/81136/

Direitos

info:eu-repo/semantics/openAccess

info:eu-repo/semantics/restrictedAccess

Fonte

Balogh, Zoltan; Fässler, Katrin; Platis, Ioannis (2015). Uniqueness of minimisers for a Grötzsch-Belinskiĭ type inequality in the Heisenberg group. Conformal Geometry and Dynamics, 19(6), pp. 122-145. American Mathematical Society 10.1090/ecgd/278 <http://dx.doi.org/10.1090/ecgd/278>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed